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Prof. R. Teyssier

Exercise 1. Streamlines and Trajectories

We consider three different flows. For each flow, determine (i) whether it is compressible, (ii)
the streamlines, and (iii) the trajectories. Sketch streamlines and trajectories.

(a) Before moving on, briefly describe the difference between streamlines and trajectories.

(b) The stationary flow

~v = (vx, vy, vz) = (x, y, 0). (1)

Sketch streamlines and trajectories originating at (x0, y0) = (1, 1).

(c) The non-stationary flow

~v = (vx, vy, vz) =

(
x

1 + t
,

y

1 + 2t
, 0

)
. (2)

Sketch streamlines and trajectories originating at (x0, y0) = (1, 1) for time t = t0 = 0.

(d) The Rankine vortex

~v = (vr, vθ, vz) =

(
0,

Γ

r
, 0

)
, (3)

where Γ is a constant (the circulation). You should find that particles move on circular
trajectories. Is this realistic for an actual vortex in nature? Why?

Exercise 2. Ideal Gas Equation of State – Compressibility and Sound Speed

(a) Consider the ideal gas equations of state

p = (γ − 1)ρε, (4)

where p is the pressure, γ the ratio of specific heats, ρ the density, and ε = e/ρ the internal
energy per unit mass. Show that (4) is the same as the more familiar equation of state for
an ideal gas

pV = NkBT, (5)

where N is the number of particles in the volume V , p the pressure, kB the Boltzmann
constant, and T the temperature.
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(b) If we consider a fixed number of particles N within a volume V , the change in occupied
volume dV as pressure and temperature are varied by dp and dT is

dV =
∂V

∂p

∣∣∣∣
T=const

dp+
∂V

∂T

∣∣∣∣
p=const

dT. (6)

Dividing by (−V ), and noting that ρdV + V dρ = 0, we rewrite (6) and define the com-
pressibility coefficient (at constant temperature) βT and the thermal expansion coefficient
α as

dρ

ρ
= −dV

V
= − 1

V

∂V

∂p

∣∣∣∣
T=const︸ ︷︷ ︸

βT

dp− 1

V

∂V

∂T

∣∣∣∣
p=const︸ ︷︷ ︸
α

dT. (7)

For an ideal gas, compute βT and α.

(c) We now define an adiabatic compression coefficient at constant entropy

βS = − 1

V

∂V

∂p

∣∣∣∣
S=const

. (8)

For adiabatic processes, no heat transfer takes place such that the change in internal energy
is just de = −pdV = Cv dT . For an ideal gas, show that

βS
βT

=
1

γ
. (9)

(d) Let us introduce the bulk moduli Bi as the inverse of the compressibilities βi, i.e.

BT =
1

βT
, BS =

1

βS
. (10)

Let us further define the sound speed

c2s =
∂p

∂ρ
. (11)

Derive the expressions for the isothermal (dT = 0) and adiabatic sound speeds. Why are
they different? What fluid property determines the actual sound speed the medium?

Exercise 3. Stiffened Equation of State – Compressibility and Sound Speed

Consider the expression for the Helmholtz free energy

A(ρ, T ) = cV T

(
1 − ln

(
T

T0

)
+ (γ − 1) ln

(
ρ

ρ0

))
− s0T +

p∞
ρ

+ ε∗, (12)

where cV , γ, p∞, ε∗ are constants specific to the continuum under consideration. From A, we
can obtain entropy s, specific internal energy ε, and pressure p as
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s(ρ, T ) = − ∂A

∂T

∣∣∣∣
ρ=const

, ε(ρ, T ) = A+ T s, p(ρ, T ) = ρ2
∂A

∂ρ

∣∣∣∣
T=const

. (13)

Also recall specific heat capacities and adiabatic sound speed as

cV =
∂ε

∂T

∣∣∣∣
V=const

, cp = T
∂s

∂T

∣∣∣∣
p=const

, c2s
∣∣
adiabatic

=
∂p

∂ρ

∣∣∣∣
s=const

. (14)

(a) From A(ρ, T ), derive the stiffened equation of state

p(ρ, ε) = (γ − 1)ρ(ε− ε∗) − γp∞. (15)

How does it compare to the equation of state for an ideal gas?

(b) Demonstrate that cV is indeed the specific heat capacity at constant volume, cp the specific
heat capacity at constant pressure, and γ the ratio of specific heats.

(c) For the stiffened equation of state, compute βT and α as previously done for the ideal gas
equation of state, cf. (7). Compare!

(d) Show that the adiabatic sound speed is

c2s = γ
p+ p∞
ρ

. (16)

With this in mind, interpret p∞ and ε∗ in (12) and (15) and compare to an ideal gas.

(e) Finally, consider the Mie-Grüneisen equation of state discussed in the lecture

p− pc = Γρ(ε− εc), (17)

with sound speed

c2s = p′c + (Γ + 1)
p− pc
ρ

, (18)

and discuss how it compares to the stiffened equation of state!
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