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Abstract
We consider the general non-linear sigma model in (1 + 1) dimensions as

a starting point to studying the relativistic string. The Weyl invariance of
the classical action is violated at the quantum level, leading to an anomaly.
We explicitly calculate the Weyl anomaly coefficient to first order in pertur-
bation theory, and restore Weyl invariance by imposing a suitable condition.
The Weyl anomaly condition is shown to follow from an emergent action
principle that fixes the target space to obey Einstein’s equations in vacuum.
A generalisation of the Polyakov action is briefly discussed.
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1 Introduction

String theory has long been considered as a possible candidate for a theory
of everything, aiming to unify the Standard Model of particle physics with a
quantum theory of gravity. It is arguably the most popular of all candidate
theories and has been the focus of intensive research for the past few decades.
The aim of this report is to give an introductory treatment of how gravity
emerges in the context of the simplest string theory model, bosonic string
theory.

We will start by reviewing the Polyakov action of the classical, relativistic
string. Briefly discarding the string interpretation, this is simply the action
of a non-linear, two-dimensional conformal field theory also known as a sigma
model. A discussion of the symmetries of the classical sigma model naturally
raises the question whether these symmetries will be preserved in the quan-
tum version of the theory. We give arguments to show that at least one of
these symmetries, namely Weyl invariance, will be violated in the quantum
theory, which will lead to the so called Weyl anomaly. The next section is
dedicated to explicitly calculating the Weyl anomaly to one-loop order in
perturbation theory. The end result of this report will be to show that the
Weyl invariance of the quantum theory can be restored by imposing suitable
restrictions on the physical target space in which the string dynamics take
place. The restrictions will lead to an action and equations of motion for
the target space, thus recovering the original interpretation of the Polyakov
action as describing a string living on a dynamic, gravitational background.

The majority of this report is based on the 1988 TASI Summer School lec-
ture notes “Sigma Models and String Theory” by C. Callan and L. Thorlacius
[1].
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2 The Classical String

2.1 The Polyakov Action

A classical string is simply a 1-dimensional object propagating in some D-
dimensional spacetime. One possible action to describe the dynamics of such
a string is the Polyakov action, given by

SP =
1

4πα′

∫
d2σ
√
γγab∂aX

µ∂bX
νGµν(X) (2.1)

This describes the invariant area of the (1+1)-dimensional string worldsheet
with metric γab (a, b = 0, 1) swept out by some embedding Xµ(σ, τ) (µ =
0, 1, . . . , D) of the string into a target space that has a metric Gµν(X). The
parameter α′ has units of [mass]−2 or alternatively [length]2, and the energy
or length scale it sets depends on the physics the string theory is designed
to describe.

There is another action, classically equivalent to SP , which shows more
clearly the geometric origins of the string action as describing an area in
spacetime. This so called Nambu-Goto action[2], however, involves the
square root of derivatives and is therefore hideously non-linear. On the con-
trary, the Polyakov action is quadratic in derivatives of the X’s and will thus
be easier to quantize.

The interpretation of the X’s and the metric Gµν as describing the em-
bedding of the string in a physical spacetime is not a priori inserted into
the string theory model. In what follows, we will instead consider a two-
dimensional quantum field theory, consisting of D scalar variables Xµ living
on some crumpled two-dimensional surface with a metric γab. The action
for the Xµ fields constains kinetic and potential terms which are described
abstractly by the Gµν term. For particular choices of Gµν we recover a
class of actions which are familiar from other contexts; for example, if one
chooses Gµν to be the metric on the D-dimensional sphere then this becomes
the SO(D) non-linear sigma model studied in the context of spontaneous
symmetry breaking. The name non-linear sigma model has carried over to
describe actions with a non-specific Gµν . We will see later that we must
make restrictions on the properties of Gµν in order for the two-dimensional
QFT (2.1) to describe a satisfactory string theory, particularly when we try
to quantize the theory.

4



2.2 Symmetries of the Polyakov Action

The Polyakov action has two important symmetries. First of all, it is reparametri-
sation invariant, which means invariance under any type of general coordinate
transformation on the worldsheet. If we denote the coordinates (σ, τ) as σa,
a ∈ {0, 1}, we have under a transformation

σa → σ̃a(σ) (2.2)

that the kinetic term in the action transform as (we briefly omit the index µ
for clarity)

γ̃ab∂̃aX∂̃bX = γcd
∂σ̃a

∂σc
∂σ̃b

∂σd
∂

∂σ̃a
X

∂

∂σ̃b
X

= γcd∂cX∂dX

whereas the metric determinant γ = det(γab) and the integration measure
d2σ transform with the Jacobian determinant J = det

(
∂σ̃a

∂σb

)
:

d2σ̃ = Jd2σ

γ̃ = J−2γ

Putting everything together, the transformation of the measure precisely
cancels that of the metric determinant, and the action (2.1) is shown to
be invariant under the transformation (2.2). From Noether’s theorem one
can then derive that there is an associated conserved current; this is the
worldsheet energy momentum tensor

Tab =
4π
√
γ

δSP
δγab

(2.3)

which is covariantly conserved:

∇aTab = 0 (2.4)

Note that the Euler-Lagrange equation of motion for the worldsheet metric
γab is simply Tab = 0. This is seemingly a stronger requirement than the con-
servation equation (2.4) but whereas the equation of motion can be violated
for off-shell γab, the equation (2.4) will always hold in a reparametrisation
invariant theory.

The Polyakov action is also invariant to a second class of transformations,
the Weyl transformations. A Weyl transformation is a local rescaling of
the metric, i.e. a transformation which chances the distances locally but
preserves angles. Under a Weyl transformation the worldsheet metric trans-
forms as

γ̃ab = eφ(σ)γab (2.5)
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This means that the inverse metric γab transforms as e−φ(σ)γab whereas the
metric determinant will transform as

γ̃ = det(γ̃ab) (2.6)

= (eφ(σ))2det(γab) (2.7)

= e2φ(σ)γ (2.8)

Since a Weyl transformation does not affect the fields Xµ this shows that
SP has Weyl invariance. Note that Weyl invariance depends crucially on
the fact that γab is two-dimensional; in an arbitrary dimension d the metric
determinant will transform with a power of d of the Weyl scaling factor and
will not cancel out the contribution from the metric itself.

Weyl transformation immediately implies that the trace of the energy mo-
mentum tensor is identically zero. Since the action should not change under
a variation with respect to the the scale factor φ, we have

0 =
δSP
δφ

=
δSP
δγab

δγab

δφ
(2.9)

= −φ(σ)

√
γ

4π
Tabγ

ab ∼ T aa (2.10)

2.3 The Weyl Anomaly

A question that naturally occurs when trying to quantize a field theory is
whether the symmetries of the classical field theory are also exact symmetries
of the quantized field theory. In general, the answer to this is “not always”
and the resulting loss of symmetry is called an Anomaly. Anomalies occur
in a wide variety of contexts, with one of the most well known ones being
the chiral or axial anomaly in Quantum Electrodynamics, which explains for
example the observed decay rate of the neutral pion (see [3] for a detailed
discussion).

In the case of the Polyakov action (2.1), one can show [1] that the Weyl
symmetry is anomalous at the quantum level. The trace of the energy mo-
mentum tensor, once promoted to an operator in the quantum field theory,
will acquire a non-zero expectation value. However, it turns out that the
Weyl invariance of the quantized action can be salvaged by imposing suitable
constraints. In the next section we will compute the one-loop contribution
to the Weyl anomaly and give an explicit form for these constraints.
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3 Quantisation

3.1 Covariant Background Field Expansion

We want to perform a perturbative expansion of the action SP . The metric
Gµν transforms covariantly under spacetime general coordinate transforma-
tions and we would like to maintain this feature in the expansion. In this
way, we can calculate diagrams using covariant vertices and propagators so
that the Weyl anomaly coefficient can be expressed in a coordinate invariant
way. The way to do this is to separate the fields Xµ in a background part
and a quantum part

Xµ(σ) = Xµ
0 (σ) + πµ(σ) (3.1)

where the background field Xµ
0 is a stationary point of the action, i.e. a

solution to the classical equations of motion

δS

δXµ
= 0 (3.2)

This way, the quantum part represents a ”small” quantum fluctuation around
the classical solution and we can perform a perturbative expansion in powers
of πµ.

The immediate problem is that the quantum field πµ is defined as a coor-
dinate difference Xµ−Xµ

0 and therefore does not transform as a vector under
general coordinate transformations. The solution to this is to replace πµ with
the tangent vector ηµ to the spacetime geodesic which connects the points
Xµ

0 and Xµ
0 + πµ. The ηµ define a system of coordinates called Riemann

Normal Coordinates which has several nice properties.
For a small enough neighbourhood around Xµ

0 there is a unique geodesic
λµ(t) that connects the points Xµ

0 and Xµ
0 + πµ, where t is a real parameter

chosen such that ( ˙ = d
dt

)

λµ(0) = Xµ
0

λµ(1) = Xµ
0 + πµ

λ̇µ(0) = ηµ

The geodesic equation for λµ(t) is

λ̈µ(t) + Γµνσλ̇
ν(t)λ̇σ(t) = 0 (3.3)
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At the point Xµ
0 (t = 0) this becomes

Γµνση
νησ = 0 (3.4)

Since this has to hold for all choices of ηµ, it tells us that Γµνσ = 0 at the
point Xµ

0 . This is simply an expression of the statement that any pseudo-
Riemannian manifold is locally flat, and as such we can always choose coor-
dinates such that the Christoffel symbols and by extension the curvature are
zero at a point. We now Taylor expand λµ(t) around t = 0

λµ(t) = Xµ
0 + ηµt− 1

2
Γµνση

νησ + . . . (3.5)

At t = 1 this defines a coordinate transformation from πµ to the Riemann
Normal Coordinates (RNC) ηµ, and we have

πµ = ηµ − 1

2
Γµνση

νησ + . . . (3.6)

The curvature tensor is defined as

Rµ
νσρ = ∂σΓµνρ − ∂ρΓµνσ + ΓλρνΓ

µ
λσ − ΓλσνΓ

µ
λρ

In RNC (where we denote the relevant quantities with a bar on top) this
reduces to

R̄µ
νσρ = ∂σΓ̄µνρ − ∂ρΓ̄µνσ (3.7)

and we can invert this expression to express the derivatives of the Christoffel
symbols in terms of the curvature:

R̄µ
νσρ + R̄µ

ρσν = ∂σΓ̄µνρ − ∂ρΓ̄µνσ + ∂σΓ̄µρν − ∂νΓ̄µρσ
= 2 ∂σΓ̄µνρ − ∂ρΓ̄µνσ − ∂νΓ̄µρσ

this can be simplified further by taking the derivative of (3.4) in the direction
η

0 = ηρ∂ρΓ̄
µ
νση

νησ (3.8)

= ∂ρΓ̄
µ
νση

νησηρ (3.9)

Since ηνησηρ is a symmetric tensor, we can symmetrize the indices of Γ

0 = ∂(ρΓ̄
µ
νσ) (3.10)

= ∂ρΓ̄
µ
νσ + ∂νΓ̄

µ
ρσ + ∂σΓ̄µνρ (3.11)

Plugging this into (3.8) we obtain

∂σΓ̄µνρ =
1

3

(
R̄µ

νσρ + R̄µ
ρσν

)
(3.12)
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Using the new coordinates ηµ, we can now perform an explicitly covariant
Taylor expansion of an arbitrary tensor around the point Xµ

0 . For a 2-
covariant tensor,

T̄µν(X0 +π) = T̄µν(X0) + ηλ∂λT̄µν(X0) +
1

2
ηλησ∂λ∂σT̄µν(X0) +O(η3) (3.13)

For the first order term we can replace the partial derivative with a covariant
derivative and a term involving the Christoffel symbol, but in RNC the latter
will vanish, leaving

ηλ∂λT̄µν = ηλ∇λT̄µν (3.14)

For the second order term, we have

ηλησ∂λ∂σT̄µν = ηλησ∂λ
(
∇σT̄µν + Γ̄ρσµT̄ρν + Γ̄ρσνT̄µρ

)
(3.15)

Again replacing ∂λ with the covariant derivative and removing terms that
involve the Christoffel symbol (but keeping the ones that involve its deriva-
tives), this becomes

ηλησ∂λ∂σT̄µν = ηλησ
{
∇λ∇σT̄µν +

(
∂λΓ̄

ρ
σµ

)
T̄ρν +

(
∂λΓ̄

ρ
σν

)
T̄µρ
}

(3.16)

Consider the second term,

ηλησ
(
∂λΓ̄

ρ
σµ

)
T̄ρν(X0) =

1

3
ηλησ

(
R̄ρ

σλµ + R̄ρ
µλσ

)
T̄ρν(X0) (3.17)

=
1

3
ηλησ

(
R̄ρ

σλµ

)
T̄ρν(X0) (3.18)

where the second curvature tensor cancels because of the antisymmetry
Rρµλσ = −Rρµσλ and contracting with the symmetric tensor ησηλ.

The last term is analogous and finally the covariant Taylor expansion reads

T̄ (X0 + π) = T̄µν(X0) + ηλ∇λT̄µν(X0) (3.19)

+
1

2
ηλησ

(
∇λ∇σT̄µν −

1

3
R̄ρ

λµσT̄ρν −
1

3
R̄ρ

λνσT̄µρ

)
(X0) +O(η3)

(3.20)

The expansion only involves covariant derivatives and spacetime tensors
so it holds in any coordinate system, which means we can drop the bars
from the notation. We can now apply this expansion to the ingredients of
the action SP . The target space metric Gµν has a simple expansion since it
is assumed to be symmetric and covariantly constant, i.e. ∇G = 0. Using
(3.20) we get

Gµν(X0 + π) = Gµν(X0)−
1

6
ηλησ

(
Rρ

λµσGρν +Rρ
λνσGµρ

)
+O(η3) (3.21)
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Since the left hand side is symmetric in µ and ν we can symmetrize the
right hand side, and we use Gµν to bring down the spacetime index of the
curvature to get

Gµν(X0 + π) = Gµν(X0) +
1

3
ηλησRµλνσ +O(η3) (3.22)

The expansion of ∂aX
µ is a bit more involved and ends up taking the form

(see [5] for a full derivation)

∂a(X
µ
0 + πµ) = ∂aX

µ
0 +∇aη

µ +
1

3
Rµ
λσν(X0)∂aX

ν
0 η

λησ +O(η3) (3.23)

Putting everything together, we have

Gµν(X)∂aX
µ∂bX

ν

= Gµν(X0 + π)∂a(X0 + π)µ∂b(X0 + π)ν

=

(
Gµν(X0) +

1

3
Rµλνση

λησ
)

×
(
∂aX

µ
0 +∇aη

µ +
1

3
Rµ
λσν(X0)∂aX

ν
0 η

λησ
)

×
(
∂bX

ν
0 +∇bη

ν +
1

3
Rν
λσµ(X0)∂bX

µ
0 η

λησ
)

+ . . .

= Gµν(X0) (∂aX
µ
0 ∂bX

ν
0 + ∂aX

µ
0∇bη

ν + ∂bX
ν
0∇aη

ν +∇aη
µ∇bη

ν)

+Rµλσν∂aX
µ
0 ∂bX

ν
0 η

λησ + . . .

In the action SP , the terms linear in X0 are of no interest. Indeed, we
defined X0 as being the solution to the classical equations of motion (3.2), so
by definition SP cannot depend linearly on X0. Up to order η2, the expansion
of SP is thus

SP [X0+π] = SP [X0]+
1

4πα′

∫
d2σ
√
γγab

(
Gµν(X0)∇aη

µ∇bη
ν +Rµλσν∂aX

µ
0 ∂bX

ν
0 η

λησ
)

(3.24)
One more problem needs to be addressed before we can quantize the action.
The term involving ∇η∇η is quadratic in derivatives of the quantum field
and represents the kinetic term of the theory. However, it involves the target
space metric Gµν which depends on X0 and it would be difficult to extract a
propagator from it. Therefore, we carry out one last coordinate transforma-
tion by introducing a vielbein eiµ(X0), which is a linear operator that maps
the vectors ηµ to a local Lorentz frame ηi (i = 0, 1, . . . , D),

ηi = eiµ(X0)η
µ (3.25)
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The vielbein satisfies

eiµ(X0)e
j
ν(X0)δij = Gµν(X0) (3.26)

where δij is a flat metric on D-dimensional space. That this is possible is once
again a consequence of the local flatness of (pseudo-)Riemannian manifolds.
In the ηi coordinate system, the kinetic term becomes

Gµν(X0)∇aη
µ∇bη

ν = (∇aη)i(∇bη)i (3.27)

which is now explicitly diagonal. The price we pay is to break gauge (diffeo-
morphism) invariance, since the local Lorentz frame defined by (3.26) is not
invariant under a general coordinate transformation. However, we maintain
explicit covariance in terms of the background Xµ

0 fields, which is the point
of the covariant background field expansion.

3.2 The Weyl Anomaly at one-loop

As mentioned in section 2.3, at the quantum level the energy-momentum
tensor Tab is promoted to an operator and will acquire an expectation value
〈Tab〉. In the canonical quantisation framework [3], this reduces to evaluation
an expression of the form

〈0 | T
{
TabRµλσν∂cX

µ
0 ∂

cXν
0 η

λησ
}
| 0〉 = sum over Wick contractions (3.28)

where T denotes the time-ordering operator and we have introduced one
copy of the energy momentum tensor Tab and one copy of the first relevant
term involving the background fields in the expansion of SP . Let x, y and
z denote worldsheet coordinates. The only nontrivial Wick contraction we
need is then

ηi(x)ηj(y) = i∆ij(x− y) (3.29)

where ∆ is the propagator of the η fields in position space. The standard
propagator for a vector field ηi with diagonal kinetic term is

∆ij(x) =

∫
d2p

(2π)2
δijeipx

p2
=

∫
d2p

(2π)2
eipx∆ij(p) (3.30)

To find the expectation value of the trace of the energy momentum tensor,
we switch to worldsheet light cone coordinates defined by

σ± = σ0 ± σ1

∂± =
1

2
(∂0 ± ∂1)
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In these coordinates, the conservation equation ∇a〈Tab〉 = 0 becomes (the
b = 0 component)

∂−〈T++〉+ ∂+〈T−+〉 = 0 (3.31)

Since T aa = −4T+−, we can calculate the expectation value of the trace of the
energy momentum tensor by calculating the expectation value of the (++)
component and using equation (3.31). Going to momentum space, we get

q−〈T++〉+ q+〈T−+〉 = 0 (3.32)

The conservation equation (3.31) or alternatively (3.32) will hold even in the
quantum theory if we insist on conservation of energy and momentum. Since
〈T++〉 is in general non-zero this indeed implies that 〈T+−〉 also has to be
non-zero, and we see that in order to maintain conservation of energy and
momentum we have to give up Weyl invariance at the quantum level (at least
for now). Continuing with the calculation, to first order in SP we have to
calculate a diagram of the form shown in figure 3.1.

Figure 3.1: Feynman diagram corresponding to the first loop order in (3.28)

The factor ∂+η
i∂+η

i on the left comes from the insertion of T++. The lines
forming the loop represent the propagators (3.29) of the ηi. We insert T++ on
the left hand side with a momentum q, and this momentum is carried away
by the background fields (represented by double lines) X0 on the right hand
side. In the loop however, we can have an arbitrary momentum l running
around which needs to be integrated over. The relevant contribution is, in
momentum space (using the inverse Fourier transform of (3.30))∫

dxdy eiqx : ∂+η
i(x)∂+η

i(x)Rµjkν∂cX
µ
0 ∂

cXν
0 η

j(y)ηk(y) : (3.33)

where everything betwen : : is contracted in all possible ways. There is only
one way to contract the indices, which leads to∫

dxdy Rµjkν∂cX
µ
0 ∂

cXν eiqx∂+∆ij(x− y)∂+∆ik(x− y) (3.34)

Using the expressions (3.30) for the η-propagators and assigning momenta
l1, l2 to the two legs we get∫

dxdy
dl1

(2π)2
dl2

(2π)2
Rµjkν∂cX

µ
0 ∂

cXν δijδjk ei(q+l1+l2)xei(l1+l2)y
(l1)+(l2)+

l21l
2
2

(3.35)
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Integrating out the delta functions lets us set l1 + l2 = −q and l1 = −l2 = l
and the final expression for diagram (3.1) is∫

d2l

2π

l+(l+ + q+)

l2(l + q)2
{
δjkRµjkν∂aX

µ
0 ∂bX

ν
0 γ

ab
}

(q) (3.36)

The part between curly brackets depends only on q and can be brought
outside the integral. The integral (3.36) can be solved using dimensional
regularisation. From [4] we get the following general formulae:∫

dN l
lµ

(l2 + 2p · l)A
= πN/2

Γ(A−N/2)

Γ(A)

−pµ
p2A−N

(3.37)∫
dN l

lµlν
(l2 + 2p · l)A

=
πN/2

Γ(A)p2A−N

[
Γ(A−N/2)pµpν −

1

2
p2δµνΓ(A− 1− N

2
)

]
(3.38)

Here Γ(x) is the Euler Gamma function. Using the identification N = 2,
A = 2, q = p/2 we find that∫

d2l

2π

l+(l+ + q+)

l2(l + q)2
= −1

4

q+
q−

(3.39)

Note that the term Γ(A−1−N/2) in (3.38) will generate a term proportional
to Γ(0), which is undefined; in fact, Γ(ε) diverges logarithmically for ε→ 0.
Formally the loop diagram in figure 3.1 diverges, and the theory needs to be
renormalized by absorbing the divergence in a field redefinition (see e.g. [6],
chapter 7). For our purposes, we can neglect this term and only work with
the finite part of the result.

Plugging this back into the conservation equation (3.32) we finally get the
expectation of the trace of Tab at one-loop order:

〈T+−〉 =
1

4
δjkRµjkν∂aX

µ
0 ∂bX

ν
0 γ

ab (3.40)

This is the Weyl anomaly coefficient. We can contract the indices in the
curvature tensor with the flat metric δjk to get the form

〈T+−〉 =
1

4
Rµν∂aX

µ
0 ∂bX

ν
0 γ

ab (3.41)

where Rµν is the Ricci curvature tensor. We see that to first order, the Weyl
anomaly coefficient depends on the curvature of spacetime. To recover Weyl
invariance, at least at this order, we can impose the condition

Rµν = 0 (3.42)

This is nothing but the Einstein field equations of General Relativity in vac-
uum. This is a remarkable result; we started with a general, Weyl invariant
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field theory in two dimensions with an arbitrary (albeit symmetric) target
space metric Gµν . Quantizing the theory breaks Weyl invariance, and restor-
ing the invariance imposes the requirement that Gµν is in fact the metric
tensor of a spacetime that obeys the vacuum field equations of General Rel-
ativity.

3.3 The Antisymmetric Tensor Action

In the previous section we only considered the Polyakov action SP , with a
symmetric, covariantly constant Gµν . We can ask whether there are any
other terms that we can consider. The metric Gµν in (2.1) is assumed to be
a symmetric target space tensor, but there is no a priori reason to assume
that the fields X cannot couple to an antisymmetric tensor as well. We can
only add one term with an antisymmetric spacetime coupling that is both
reparametrisation and Weyl invariant:

SAS =
1

4πα′

∫
d2σ εab∂aX

µ∂bX
νBµν . (3.43)

Here, Bµν = −Bνµ and εab is the two-dimensional Levi Civita symbol. We
can define a field strength H for the field Bµν as

Hµνλ = ∇µBνλ +∇νBλµ +∇λBµν (3.44)

If we now quantize the total action S = SP + SAS along the lines of the
previous section (see [1] for the lengthy, technical derivation), we find other
contributions to the Weyl anomaly coefficients. Summarizing, to first order
in perturbation theory (which includes first-order two-point correlators of
the energy momentum tensor) there will be two independent Weyl anomaly
coefficients, leading to two constraints on the target space tensors:

Rµν −
1

2
GµνR =

1

4

[
HµλσH

λσ
ν −

1

6
GµνH

2

]
(3.45)

∇λHλµν = 0 (3.46)

Here, R = GµνR
µν is the Ricci scalar.

3.4 Consistency of the Weyl Anomaly Conditions

If we take a closer look at the anomaly conditions we notice, on the left hand
side of the first equation (3.45), the spacetime Einstein tensor Rµν − 1

2
GµνR.

It is a symmetric tensor and it is covariantly conserved because of the Bianchi
identity for the curvature tensor Rµνρσ. If the right hand side were to be
conserved as well, this would be a consistent equation, and in fact would
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be the Einstein field equation in the presence of matter, with the right hand
side representing the spacetime energy momentum tensor. That this is indeed
the case can be checked immediately, and it is in fact the second condition
(3.46) that insures that the spacetime stress energy tensor is conserved. The
two equations (3.45) and (3.46) are therefore not purely independent but
instead consistent with each other, and must hence be able to be derived
as equations of motion from a certain action. The action, in D dimensions,
whose variation reproduces the two Weyl anomaly conditions is

SD =

∫
dDX

√
G

{
R− 1

12
H2

}
(3.47)

This is simpy the Einstein-Hilbert action along with a Maxwell type kinetic
term for the antisymmetric tensor field. The conclusion we can draw then is
that when we study the general non-linear sigma model in two dimensions,
the requirement of maintaining Weyl invariance at the quantum level imposes
on the fields and the coupling functions the structure of a D-dimensional
gravitational spacetime whose dynamics are controlled by an extension of the
Einstein-Hilbert action of general relativity. This remarkable conclusion has
one main drawback, namely that it is only shown here to be true at one-loop
order in perturbation theory. But one can, in principle, compute higher order
contributions to the Weyl anomaly coefficients, and it is generally believed
that to all orders the Weyl anomaly conditions can be derived from a master
spacetime action. The exciting idea is that higher order contributions will
add terms to the action which can be interpreted as string corrections to
general relativity (at least in D dimensions).
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