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Quantum computation

e Classical computer: limited computational power

3d magnet

e Interference - Quantum physics could speed up processes

e Qubit: |Y>=al0>+B|1> where a?+p%=1, a,fEC
« Hilbert spaces: Y, € H; , Y, € H,
2> Y12 = Xjj=(1,2) 4V OV € H®H,
classical: m bits - 2™ states
quantum: m qubits > 2™ basis states
« Entanglement: speeding up classical algorithms
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Quantum computation

* Quantum Circuits: unitary operators that act on a Hilbert space, generated by n
qubits, whose states encode the information we want to process.

Quantum Circuits are composed of elementary Quantum gates.

* Universality: existence of a universal set of quantum gates, the elements of which
can perform any unitary evolution in SU(N) with arbitrary accuracy

Need:

1. Singe qubit rotation gates that can span SU(2): |¢) = U |y)

2. A Two - qubit entangling gate: UeSU(2)
> [y

1 0 0 0 @ x=0 - y unchanged

CNOT = oL 00 time _ y=0-y=1

00 0 1 150,215 y =0

0O 0 1 O 7N\
ly> L/ lx®yv> where @ = addition mod 2

Examples of quantum algorithms: — Deutsch algorithm
— Shor’s factoring algorithm
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Quantum computation

e Deutsch Algorithm
* Boolean Function F: Constant (f(0)=f(1)) or Balanced (f(0)#f(1))?

Single qubit rotation | |
gate called Hadamard : 10 H U H /ﬂ
-0 ) 1 F
Sz -1 | 1) H— —Hl—

* Requires only 1 measurement to answer while classically it takes 2
evaluations of F

Decoherence

Very easy for errors to appear in the system due to interactions with the
environment:

Examples: 1.Bitflips: [|[0>->11> , |1> —>|0>

. 1 1
2. Phase flips: ﬁ(l 0>+l1>)-> E(I 0>—[1>)
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Quantum computation

Goal: encode information in an environment
independent way

4 )
ldea: Topological properties are insensitive to

local perturbations

/"""""'/

\ l\l'

TIME
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Abelian anyons

Exchanging: Z C t

| Pa>lpp > = e 1P >y > 2( 2)

Winding: |

| Ya >l g > = ()2 1 Ya >l 5 > X

In3D: [(e¥)2 =1 Co(to)

—>Boson: 0=2n+2nn | Y > = | Ypyu >

—Fermion: O=rt+2nn | Yy > > —| Ppy > A > C (t )

1\*1

Move to 2D:

Any 6 - “Any”-ons

Exchanging=braiding /
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Non-abelian anyons

e Degenerate state space {y;}, i = 1,...,d then:

Y1 Yy Yy
b \ofwn \ (Y ey (s
l/J.d l/).,d Usr - Ugg l/J.d

—>  (Candidate space to store and process
qguantum information
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Physical realization of Non-abelian anyons:

1. Degenerate ground state

2. Finite energy gap AE for ground state

3. Adiabaticity

4. Anyons being far apart

5. All local operators have vanishing correlation functions apart
from identity
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Fractional Quantum Hall effect

' BZK: T WI

e O
@ >

e Trapped e gas
82

e Conductance: o = v; where v a fractional number

—Fractional charge

: 1
e Abelian anyons forv = 3
Laughlin states: Trial wavefunctions

Expect - fractional statistics = anyonic statistics
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Geometric phase

e Time evolution of a state:

121
| Y(T) >= exp(lyn(C)) exp{ h j dt En(R(t))} | Y(0) >

where y,,(C) is Berry’s geometric phase:

¥o(C) = i§. <mR(t)|Vgn,R(t) >dR = §. A,dR* = § ~F,,dR* AdR"
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Geometric phase

Vector potential gauge transformation:
A, - A, —0,ay
Vector field:
(Fuv)if = (auAv - avAu)if
— invariant under gauge transformations
If (Fm,)if # 0 i.e. not diffeomorphic invariant as well:

— Case 1: Non-degenerate state space - Abelian geometric
y phase, U(1)

Example:
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Geometric phase

- Case 2: Degenerate state space ((Fm,)if a matrix):
Example: ABC # CBA

AB

Transformations of the state space are elements of SU(2)
For N degenerate state space transformations are elements of SU(N)
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Geometric phase

In general: | Y(C) >=T4(C) | Y(0) >

[4(C) = exp(iy, (0))
C™'(1)

C, (1) C,(1)
Co (1)
AP ESIETL O

the following properties hold:
(A) Ta(Cy-Cy) =TaA(C)TA(Cy) (Cq,C, pathsin parametric space

(B) Ta(Cy) =1 Co point
(C) Ta(C™H=T7",(C) C clockwise path,

C ! anti-clockwise path
(D) TA(Cof)=Ta(C) f is a function of time t

(A)+(B)+(C) — Forms a Group
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Geometric phase

e Relate parametric space to anyons coordinates

* Assume vector field F,,, is confined to anyons position

Hence:
M R*
_¢
— ¢ O
A ——
non-abelian geometric evolutions in a system
phases evolutions of non-abelian anyons
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Topological Quantum Computer

/Z_._ /“*’J

\ qg)[s" . ]Ew]'*PJ

Ay Gy

A,

e Quasiparticle worldlines forming braids carry out unitary transformations on a
Hilbert space of n anyons.

e This Hilbert space is exponentially large and its states cannot be distinguished by
local measurements

—— candidate model for fault-tolerant quantum computing
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Topological Quantum Computer

e 1997 A.Kitaev: System of non-abelian anyons with suitable properties
can efficiently simulate a quantum circuit

e 2000 Freedman, Kitaev and Wang: system of anyons can be simulated
by a quantum circuit

—Equivalence of the two views of the system, i.e. between an anyonic
computational model (e.g. a Topological guantum computer) and a
guantum circuit

Is there an anyonic computational model that can simulate a quantum
circuit that exhibits universality?

13/05/13 Fibonacci anyons & Topological Quantum Computers ' Christos Charalambous



Contents

3. Computing using anyons
« Braiding
o Fusion
« Recap: Fusion rules for minimal models
« Fusion space
« F & R matrices
« The unitary B-matrix
« Compatibility equations: Pentagon and Hexagon equations

13/05/13 Fibonacci anyons & Topological Quantum Computers ' Christos Charalambous



Braiding

o; '= exchange of ith and (i + 1)th anyon
e World lines cannot cross

— braids g; (particle histories) in
distinct topological classes
e 1:1 correspondence of the topological

o

classes with distinct elements of a Braid set

1. Any braid can be obtained by ]
multiplying elementary braids

2. The inverse of any braid exists =— —»> Braid group

3. Existence of Vacuum

4. Associativity for disjoint g;
p(o;) representations of the Braid group = the unitary transformations
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B

Defining relations of Braid group for an anyonic model:
1. Exchanges of disjoint particles commute:

0j0x =0x0; |j—kl|=2
4E
\

RIVEIE

2. Yang-Baxter relation:

GjGj+1Gj = Gj+1GjGj+1 ] = 1,2, e, L — 2

L
L L
Cat -
L

9
—
N
S/ \./ /
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Fusion

e Fusion: The process of bringing two particles together

e A non abelian anyonic model is defined starting from the
superselection sector:

Finite set of particles that are linked by the following fusion
rules, and their charges are conserved under local operations

Fusion algebra: aXb=).,N¢,¢

where N€ ,; can be matrices
Abelian N€ ;=1
Non-abelian },. N€,, > 1

e Associativity: 2e N b NCie = 2e N®pa N€q
e Commutativity: N€.p=N
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Recap: Fusion rules for minimal models

e Same fusion algebra:

$; X P =2Nkij¢k
k

e Commutativity also holds:

e Associativity :

lejkNmil = leiijlk
l

l

—> Minimal models can be mapped to anyonic
models
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Fusion space

e Fusion spaces V¢ ,: are subspaces of the space of all possible
fusion outcomes which are also Hilbert spaces:

Va®V, = ©:NpVE ap
The logical states | 0 > & | 1 > will be encoded in one of these
fusion spaces

e Relation of dimensionality of fusion spaces and quantum
dimension:

dedp = Zc Ncabdc

¢ Simplest non-abelian example fusion rule for Spln- — partlcles
—®— = 01
(Le.2x2 1+3)
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Fibonacci anyons fusion rule:

The

13/05/13

TRT = 1Pt 1 =vacuum
T = non-abelian anyon

Fusion (Anyonic) Hilbert space:

T T T T T T
1 T
T T
l(tt> DTt > 7> l(tt> DT> T7T>

Fusion trees are orthogonal basis elements of a Hilbert space

If the initial and final states are fixed then the dimension of this
space depends on the number of in-between outcomes. For the
above example the dimension is 2.
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The F-matrix The R-matrix
The order of the fusion should Exchange of a & b before fusion= self-
not be relevant (associativity): rotation of outcome c after fusion:

T T T T T T b a
a b \ b a
1,t = 1,t Ra,b Y — — Rg:a Y
c c
c
T T

therefore just a phase factor is
obtained. For many in between
outcomes R = diagonal matrix:

Therefore there exists a matrix F
that transforms one basis to the
other: o .

A C A C S y
I c
\</ > B Z (R‘b” )ﬂ
7,

D D ¢ ¢
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e Consider superposition of multiple fusion outcomes, and consider the
braiding of two particles that do no have a direct fusion outcome

——> exchanges result in a non-diagonal matrix R

e By applying F matrices on the R matrices we can change to a basis where
the anyons do have a direct fusion outcome:

B = FRF~! = p(0;)

C a C a C

T T

a

b

e F & R fully describe all the processes we can do in an anyonic model of
computation

C

13/05/13
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Fusion is associative —> Associativity of fusion + allow
pentagon equation must hold: braiding — Hexagon equation

F. NA F R \&
1 2 3 4/Y/\l 2 3 4 F/\%/—)\ﬁ/\F
x{/ V X/R R\Y
d % LN /.

\ 2~ 3 2 3
1 2 3 4 1 2 3 4 N, F
b — d
4 4
4 c c pa
(Flzc)d(F534)b—Z(F234) (F 84)d(F 23)2 Z(F ’Sl)leb(FI% _Rl%(F 13)aR12
b

These two equatlons encode all the constraints we can impose on F & R
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Fibonacci anyonic model

e Simple and rich structure

TQ®7T = 1P7

e Encoding of logical states (the naive way):

0)= |(e.0)2> = (@0

|
&
-
-__‘I
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Fibonacci anyonic model

e Simple and rich structure

TQ®7T = 1P7

e Encoding of logical states:

0) = |((e,®)1,0)r) =

e
D=l 00 =Co e, = \Y
=X

The last state is not a problem as we will see right now:
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Fibonacci anyonic model

From fusion rules and pentagon equation for Fibonacci model:
Frnl — FlTTT — FTlTT — FTTlT =1

E

1
\vo
(1++/5)

al-

TTT
F T_

S|+

where ¢ is the golden ratio ¢ = "—

From hexagon equation and Yang-baxter relation:
R‘L'l — Rl‘L’ =1
T T

RTT — (ei47T/5 O )
0 _eLZn/S

Fibonacci anyons & Topological Quantum Computers | Christos Charalambous
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Fibonacci anyonic model

Braiding matrices obtained from F and R:

0) e~4mi/5 0 0 0) OB
| =] o —eis| g 1) 01 = A
N 0 0 |—e?m/? N
N) N) D)
plo1)
_ | A A A
|O> _e—mﬁ/gb _Z'e—mfl(]/\/a 0 ‘0> \
| = lemoe e | o [l e = | A
|N) \ 0 0 —G_QWM)/ IN) oo
N — < ®
p(o2) o

13/05/13 Fibonacci anyons & Topological Quantum Computers ' Christos Charalambous



Fibonacci anyonic model

Dimension of Hilbert space for Fibonacci model with the constraint that
no two consecutive 1’s can appear

T T T T T
L L
. _
Z{I T 1
3_1 T
5. T
1
. . T
Bratelli diagram:
A
1 1 2 3 5 o] 13 21
T — — — — - ; _
1 1 2 3 5 8 13
1 »
T 2T 3T 4t 5T 6T 7T 8t

—2 Dimension of the space is « ®"
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Fibonacci anyonic model

Universality

e Solovay and Kitaev (version of brute force search algorithm):

Combine short braids - can obtain a long braid that with arbitrary
accuracy € will simulate a desired single qubit unitary operation

e Bonesteel, Hormozi: 2-qubit entangling gate CNOT
15t observation:

Te

4
MAANSPIARY =
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Fibonacci anyonic model

2nd observation:

Case 1: upper qubitis |0) = q-
S ———

\1 /
W\ f\ A j\f\ JW‘ £




Fibonacci anyonic model

- p(oy) & p(o,) acting on the logical states can perform any unitary
evolution in SU(N)

- universal computations

Conclusion:

Fibonacci anyonic model:
* Can achieve universal computing
* well-controlled accuracy

* Requires 4n physical anyons for encoding n logical qubits (i.e.
polynomial scaling)
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e spin-1 particles: 11 =0D1P2
e Similarity to: TQ®T=0 1t Iifspin-2iscut off

o SU(2)k: “ quantized” version of SU(2) obtained by truncating the
possible values of the angular momentum to

_0lq3 K
]—0,2,1,

272
1
e.g. SU(2); ={0,5,1,3}

e Consider only 0 & 1 particles of SU(2)5

—>subgroup (“even” part) of SU(2); = superselection sector of
Fibonacci model

e |A model described by such symmetry is the SU(2)3; WZW model
coupled to a U(1) gauge field
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k 2 1
Scs(A) = EJM d3xehvP tr <AM6VAP + lgAﬂAvAp) = EJM d3xLqs(A)

where k: coupling constant , M = X X R (2+1D) , Ais a gauge field

e No metric = invariant under diffeomorphisms
e Non Abelian Gauge transformations:

Ay =gA,g7" —igd,g™' where gM->G

~>Les(A') =
— k - - —
Les(A) — ket a,tr ((0,9)97 4,) — 2 e4Ptr(g ™1 (3,9)9 " (39)9~* (,9))

For suitable boundary conditions the 15t extra term vanishes in the
action.
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In the case of simple compact groups e.g. G=SU(2):

w(g) = 53— &"Ptr(97(9,9)97(9,9)97 (3,9))

where w(g)=winding number and we realize that is proportional to the
2"d extra term in the Lagrangian. Hence the action becomes:

> Scs(A') = S¢s(A) + 2nrw(g)
* If w(g)=0 (small gauge transformations, low energies)
— action is invariant
* If w(g)#0 (large gauge transformations, high energies)
— failure of gauge invariance
Case 1: k integer - OK

Case 2: k not an integer — [ gapped pure gauge degrees of
freedom for the high energy
theory
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k
H — _tr(AzaoAl — AlaoAz) — L —_ O

4
Easily seen if we choose gauge A, = 0 where the momenta
k
canonically conjugated to: A4,: ———A4 , A, —A
Y Jug 1 42 2° g

Introduce spatial boundaries M = 90X X R

e Locally (bulk part): Gauge invariance

e BUT globally: topological obstruction in making the gauge field zero
everywhere if 2 topologically non-trivial

- Chern-Simons gauge invariant up to a surface term
- physical topological degrees of freedom

- Chern-Simons: theory of ground state of a 2D topologically ordered
systemin 2
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Conclusion
e For low energies:
— Chern Simons theory describes non abelian anyons.

e For high energies:

— Difficult to disentangle physical topological degrees of freedom from
unphysical local gauge degrees of freedom

— hence have to consider Chern Simons as low energy effective field
theory

What is the theory that describes the excitations of these
quasiparticles?
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Recap of WZW models

e WZW models describe Symmetry Protected topological Phases (SPT)
in 2D at an open boundary with symmetry SU(2).

e Showed global and local SU(2) invariance of ], (the WZW charge
carrying covariant current density) coupled with an external field
action

e Showed that integrating action with an external field leads to an
effective field theory:

WZW action coupled with external field at low energies

= Chern Simon action

For WZW models:
— k= number of anyon species in the theory - integer

— gapless WZW gauge degrees of freedom = CS pure gauge degrees of
freedom
—Solved problem of Chern-Simons in higher energies
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Summary

1. Defined Quantum Computer and identified problem of
decoherence

2. ldentified topological properties as a remedy for the
problem

3. Identified anyons as systems that exhibit such
topological properties and hence under specific conditions can
accomodate a Topological quantum computer

4. Examined Fibonacci anyons as candidate particles for
performing Universal Topological quantum computing

5. Showed that such particles can be theoretically
described in the context of a CFT model
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