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Abstract

This work pretends to give a basic view of the main aspects of
bosonic string theory, T-duality and D-branes. We take as starting
point the Nambu-Goto action and from there proceed to find an ad-
equate parameterization so that we can solve the equation of motion
of both open and closed strings. Next, quantization is discussed in
some detail for both open and closed strings. T-duality for closed
strings is sketched and D-branes are introduced as a preamble to be
able to understand T-duality in the presence of open strings. Finally
some particular D-branes configurations with background electromag-
netic fields are studied and related to their dual equivalent and the
Born-Infeld lagrangian is briefly discussed.

Emphasis is made on how string theory is able to reproduce and
describe concepts that appear in quantum field theory such as Yang-
Mills theories. The approach to solve the equations of motion and to
quantize the theory is made in the light-cone gauge and using light-
cone coordinates.

The major omissions are superstrings and the covariant approach
in terms of the Polyakov action.
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1 The Nambu-Goto action and its symme-

tries

1.1 Nambu-Goto action

The departure point for bosonic strings is the Nambu-Goto action. It is a
direct generalization of the action of a relativistic point particle since it is
basically the volume of the world-sheet traced by the string, the only sensible
geometrical quantity.

The two parameters that characterize the non-relativistic string are the
tension and the mass density. In the case of the relativistic string there is
only one characteristic parameter, which we will take to be the tension T0.
The canonical speed in the theory of relativity is c, the speed of light, it is
therefore logical to propose the following action functional based only upon
Lorentz symmetry and dimensional analysis considerations:

S =
−T0
c

∫ τf

τi

dτ

∫ σ1

0

dσ

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2 (1)

Ẋµ ≡ ∂Xµ

∂τ
X ′µ ≡ ∂Xµ

∂σ
(2)

1.2 Four-momentum conservation

The Nambu-Goto action only depends on derivatives of the string coordinates
therefore it is invariant under variations δXµ(τ, σ) = εµ, i.e. under a constant
translation in spacetime. In this circumstances Noether theorem guarantees
the existence of a conserved current. We know that translational invariance
is related to four-momentum conservation so we expect the conserved charge
to be the four-momentum.

The conserved current is:

jαµ =
∂L

∂ (∂αXµ)
≡ Pαµ (3)

The components of the conserved current are just the conjugate momenta,
the conservation law and the conserved charge are:

∂αPαµ =
∂Pτµ
∂τ

+
∂Pσµ
∂σ

= 0 (4)

pµ(τ) =

∫ σ1

0

Pτµ(τ, σ)dσ (5)
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The integral is to be performed with τ held constant. The conserved currents
live on the world-sheet and so we should be able to obtain the charges using
more general curves, in fact we have:

pµ =

∫
γ

(
Pτµdσ − Pσµdτ

)
(6)

for any curve γ with endpoints on the boundary of the world-sheet.

1.3 Lorentz symmetry

The Nambu-Goto action is also invariant under Lorentz transformations:
δXµ = εµνXν . Lorentz invariance is related to angular momentum conserva-
tion. Applying Noether theorem we obtain:

εµνjαµν =

(
−1

2
εµν
)(

XµPαν −XνPαµ
)

(7)

The conserved current is:

Mα
µν = XµPαν −XνPαµ (8)

The conservation law and the conserved charges are:

∂αMα
µν =

∂Mτ
µν

∂τ
+
∂Mσ

µν

∂σ
= 0 (9)

Mµν =

∫
γ

(
Mτ

µνdσ −Mσ
µνdτ

)
(10)

1.4 The slope parameter α′

The string tension T0 is the only dimensionful parameter in the string action.
However it is more usual to work with the alternative parameter α′. The
parameter α′ has an interesting physical interpretation, used since the early
days of string theory when it was tought as a theory of hadrons. Consider a
rigidly rotating open string, then α′ is the proportionality factor that relates
the angular momentum J of the string measured in terms of ~, to the square
of its energy E.

J

~
= α′E2 (11)

Assume the string is rotating in the (x, y) plane, then J = |M12|. We will
just quote the result:

J = |
∫ σ1

0

(X1Pτ2 −X2Pτ1 ) | = σ2
1T0

2πc
(12)
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Since σ1 = E
T0

we obtain:

α′ =
1

2πT0~c
(13)

2 Equations of motion, boundary conditions,

and D-branes

The dynamics of the string is obtained as usual by varying the action:

δS = 0 (14)∫ τf

τi

dτ

∫ σ1

0

dσ

[
∂

∂τ

(
δXµPτµ

)
+

∂

∂σ

(
δXµPσµ

)
− δXµ

(
∂Pτµ
∂τ

+
∂Pσµ
∂σ

)]
= 0

(15)

Pτµ ≡
∂L

∂ (∂τXµ)
= −T0

c

(
Ẋ ·X ′

)
X ′µ − (X ′)2Ẋµ√(

Ẋ ·X ′
)2
−
(
Ẋ
)2

(X ′)2
(16)

Pσµ ≡
∂L

∂ (∂σXµ)
= −T0

c

(
Ẋ ·X ′

)
Ẋµ − (Ẋ)2X ′µ√(

Ẋ ·X ′
)2
−
(
Ẋ
)2

(X ′)2
(17)

The first term can be ignored if we restrict ourselves to variations for which
δXµ(τf , σ) = δXµ(τi, σ) = 0. The second term has to do with the string
endpoints and is in fact a collection of 2D = 2(d + 1) terms, we need ap-
propiate boundary conditions to make all these terms vanish. The last term
must vanish for all δXµ so it must be:

∂τPτµ + ∂σPσµ = 0 (18)

This is the equation of motion of the relativistic string, note that it coin-
cides with the four-momentum conservation law derived in section 1.2. The
equation of motion is really complicated, to be able to solve it we will have to
cast it in a simpler form using reparameterization invariance, before turning
our attention to that point lets say a few words about the possible boundary
conditions.

Let σ∗ be an endpoint then there are two natural options to make any of
the single terms vanish:

Dirichlet b.c. δXµ(τ, σ∗) = 0 =⇒ ∂Xµ

∂τ
(τ, σ∗) = 0 µ 6= 0 (19)
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Free endpoint b.c. Pσµ (τ, σ∗) = 0 (20)

The second condition is called a free endpoint condition because it does not
impose any constraint on the variation δXµ(τ, σ∗), the endpoint is free to do
whatever is needed to get the variation of the action to vanish. Time must
flow as τ flows so for µ = 0 the only possibility is to impose free endpoint
condition Pσ0 (τ, σ1) = Pσ0 (τ, 0) = 0. Eventually we will understand the free
endpoint b.c as a Neumann b.c.

These boundary conditions can be imposed in many possible ways. For
each spatial direction, and at each endpoint we can choose either a Dirichlet
or a free endpoint b.c. Since closed strings have no endpoints, they do not
require boundary conditions.

When we study the dynamics of a non-relativistic string we impose Dirich-
let or Neumann b.c. depending on whether the endpoints are attached or free
to move. The objects on which open string endpoints must lie are charac-
terized by the number of spatial dimensions that they have. They are called
D-branes,the letter D stands for Dirichlet. A Dp-brane is an object with p
spatial dimensions. Since the string endpoints mut lie on the Dp-brane, a set
of Dirichlet boundary conditions is specified. D-branes are not necessarily
hyperplanes nor are they necessarily of infinite extent, even though we will
only consider this simple case. When the open string endpoints satisfy free
boundary conditions along all spatial direction, we still have a D-brane, but
this time it is a space-filling D-brane.

At this stage we can point out an ”inconsistency” of the theory. Previ-
ously we derived the conservation of four-momemtum pµ however:

dpµ

dτ
=

∫ σ1

0

∂Pτµ
∂τ

dσ = −
∫ σ1

0

∂Pσµ
∂σ

dσ = −Pσµ |
σ1
0 (21)

The right hand side vanishes in the case of closed strings since the points
0, σ1 are to be identified. It also vanishes for open strings with free endpoints
boundary conditions but is not necessarily vanishing for open strings with
Dirichlet boundary conditions so we may wonder if this boundary conditions
are appropiate at all. The way out of this difficulty is to recognise that the
D-branes where the open string endpoints are attached are dynamical ob-
jects in their own right, in fact one can write down an action functional for
D-branes and check that they can carry energy, momentum and they can
even be charged. In this work we treat D-branes passively, we never give
them dynamical character by writing down the action, however is important
to keep in mind these considerations to avoid conceptual difficulties in the
development. In this particular situation the problem disappears when we
acknowledge that the D-brane being a dynamical object can carry the mo-
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mentum that flows off the string endpoint and so as a whole momentum is
conserved.

3 The static gauge

3.1 Static gauge

The equation of motion of the string is very complicated, to be able to solve
it we will need to exploit reparameterization invariance and simplify the
equation. In this section we introduce a partial parameterization that will
be useful to gain some insight.

We fix the lines of constant τ by relating τ to the time coordinate X0 = ct
in some chosen Lorentz frame. Consider the hyperplane t = t0 in the target
space. This plane will intersect the world-sheet along a curve-the string at
time t0 according to observers in our chosen Lorentz frame. We declare this
curve to be the curve τ = t0. Extend this definition for all times.

We do not try at the moment to make any smart choice of σ. For an open
string we just require one edge of the world sheet to be the curve σ = 0 and
the other edge to be the curve σ = σ1 i.e. σ ∈ [0, σ1]

In this gauge:

∂Xµ

∂σ
=

(
0,
∂ ~X

∂σ

)
∂Xµ

∂τ
=

(
c,
∂ ~X

∂t

)
(22)

3.2 String action in terms of transverse velocity

The first thing we will do is to rewrite the Nambu-Goto action in a way
where the similarities with the relativistic point particle is more manifest.

We could define the string velocity as ∂ ~X
∂t

, however this quantity is gauge
dependent, different parameterizations of σ would yield different concepts of
velocity, this suggest that longitudinal motion on the string is not physically
meaningful.

There exists a velocity that is gauge independent, the transverse velocity:

~v⊥ ≡
∂ ~X

∂t
−

(
∂ ~X

∂t
· ∂

~X

∂s

)
∂ ~X

∂s
(23)

where s is a parameter that measures length along the string, i.e. ds =

|d ~X| = |∂ ~X
∂σ
||dσ| therefore ∂ ~X

∂s
is a unit vector tangent to the string.
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It is not hard to show that the argument of the square root in the Nambu-
Goto action can be written as:√(

Ẋ ·X ′
)2
−
(
Ẋ
)2

(X ′)2 = c
ds

dσ

√
1− v2⊥

c2
(24)

So:

S = −T0
∫
dt

∫ σ1

0

dσ

(
ds

dσ

)√
1− v2⊥

c2
(25)

The Lagrangian is then L = −T0
∫
ds

√
1− v2⊥

c2
, since T0ds can be identified

with the rest energy is clear what this formula is telling us: to build the
Lagrangian of a relativistic string just add up all the Lagrangians of the
infinitesimal relativistic segments but be aware that in each infinitesimal
segment only transverse motion is relevant. Now the analogy with the point
particle action is clear, also there is no reason to doubt about the minus sign
that appears in the Nambu-Goto action which could at first look somehow
suspicious.

3.3 Open string endpoints

Now we use the static gauge to obtain some information about how the
endpoints move. We will show that:

• The endpoints move transversely to the string.

In the static gauge we have:

Pσµ =
−T0
c

(
∂ ~X
∂σ
· ∂ ~X
∂t

)
Ẋµ −

(
−c2 +

(
∂ ~X
∂t

)2)
X ′µ

c ds
dσ

√
1− v2⊥

c2

=

=
−T0
c2

(
∂ ~X
∂s
· ∂ ~X
∂t

)
Ẋµ +

(
c2 −

(
∂ ~X
∂t

)2)
∂Xµ

∂s√
1− v2⊥

c2

(26)

In particular we have that Pσ0 = −T0
c

(
∂ ~X
∂s
· ∂ ~X
∂t

)
√

1−
v2⊥
c2

. As we mentioned before the

time coordinate must satisfy free endpoint boundary condition so Pσ0(τ, σ∗) =

0 and therefore we conclude
(
∂ ~X
∂s
· ∂ ~X
∂t

)
= 0 at the endpoints.

• The endpoints move with the speed of light.
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In view of our previous result we can write:

Pσµ(τ, σ∗) = −T0

√
1− v2

c2
∂Xµ

∂s
= 0; µ = 1, 2, ..., d (27)

or

~Pσ(τ, σ∗) = −T0

√
1− v2

c2
∂ ~X

∂s
= 0 =⇒ v = c (28)

4 Light cone gauge

4.1 Gauge fixing

In this section we present a class of gauges to parameterize the world-sheet,
then the equation of motion is finally solved.

Consider the equation nµx
µ(τ, σ) = λτ , where λ is some constant with

units of velocity. This is the equation of a hyperplane in the target space, if
two points x1, x2 satisfy the equation then nµ(xµ1 − x

µ
2) = 0 i.e. the vector

that joins the two point is orthogonal to the vector nµ. The points Xµ that
satisfy nµX

µ = λτ are points that lie both on the world-sheet and on the
hyperplane. All these points must be assigned the same value τ .

We need strings to be spacelike objects, perhaps null in some limit, but
certainly never timelike. A timelike nµ is enough to guarantee this, but it is
too restrictive, we will allow both timelike and null. None of this gauges is
Lorentz covariant.

In section 1 we showed that due to translational invariance there is a
conserved charge pµ, we use this Lorentz vector to rewrite our gauge condition
as follows:

n ·X(τ, σ) = λ̃(n · p)τ (29)

Since n · p is a constant the net effect is that we have traded the con-
stant λ for another constant λ̃. When open strings are attached to D-branes
not all components of the string momentum are conserved. Since we want
our analysis to hold even in this case, we will assume that the vector nµ is
chosen in such a way that n · p is conserved. This condition is weaker than
the condition of momentum conservation. We will assume that n · Pσ = 0
at the open string endpoints since this condition naturally guarantees the
conservation of n · p.

By involving nµ on both sides of the equation, the length of nµ has been
made irrelevant. Only the direction of nµ matters. This new constant has
dimensions of λ̃ ∼ c

T0
= 2πα′~c2.

From now on we work in natural units and write the action in terms of
α′ rather than T0.
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The Nambu-Goto action in this units is

S =
−1

2πα′

∫ τf

τi

dτ

∫ σ1

0

dσ

√(
Ẋ ·X ′

)2
−
(
Ẋ
)2

(X ′)2 (30)

We choose λ̃ = 2α′ for open strings.
So far for the τ parameterization. The σ parameterization is fixed by

requiring the constancy of nµPτµ over the strings. Additionally, we require a
parameterization range σ ∈ [0, π] for open strings or σ ∈ [0, 2π] for the case
of closed strings. We can in fact do so since in the static gauge:

Pτµ =
T0
c2
ds

dσ

Ẋµ −
(
∂ ~X
∂s
· ∂ ~X
∂t

)
∂Xµ

∂s√
1− v2⊥

c2

(31)

Since all the σ dependence comes from the fraction ds
dσ

if we are given a
parameterization σ̃ in which n · Pτ (τ, σ̃) depends on σ̃, we can choose a σ
parameter so that n · Pτ (τ, σ) does not depend on σ. A simple rescaling now
will yield the appropiate range for σ. In this final parameterization we have:

n · Pτ (τ, σ) = a(τ) (32)

Where a(τ) is some function of τ . In fact a(τ) is already fixed by the
conditions we have imposed:∫ π

0

dσ n · Pτ (τ, σ) = n · p = πa(τ) =⇒ a(τ) =
n · p
π

(33)

Dotting the equation of motion with nµ we obtain ∂
∂σ

(n · Pσ) = 0. This
means that n · Pσ is constant along the string. We required that n · Pσ = 0
at the open string endpoints and so n · Pσ = 0 all along the string.

For closed strings we want a range σ ∈ [0, 2π] so in this case n · Pτ = n·p
2π

,

due to this change is convenient to choose λ̃ = α′ for closed strings so the
gauge fixing is n ·X = α′(n · p)τ .

In resume:
n ·X(τ, σ) = βα′(n · p)τ (34)

n · p =
2π

β
n · Pτ (35)

n · Pσ = 0 (36)

Where it is understood that β = 2 for open strings and β = 1 for closed
strings. Note that we did not prove (36) for closed strings. For open strings
we know that n ·Pσ = 0 at the endpoints however in the case of closed strings

11



there are no special points were n · Pσ = 0 is known to vanish. In addition
there is not a natural way to select the point σ = 0 at each value of τ . It
turns out that the two problems can be solved at once and there is enough
freedom so that (36) can be consistenly imposed.

4.2 Constraints due to the gauge fixing

There are some constraints in Ẋ and X ′ implied by our choice of parameter-
ization:

0 = n · Pσ = − 1

2πα′

(
Ẋ ·X ′

)
∂τ (n ·X)−

(
Ẋ
)2
∂σ (n ·X)√(

Ẋ ·X ′
)2
−
(
Ẋ
)2

(X ′)2
(37)

In view of (34), (37) implies Ẋ · X ′ = 0, this result together with (34) and

(35) gives n · p = 1
βα′

X′2(n·Ẋ)√
−Ẋ2X′2

=⇒ Ẋ2 +X ′2 = 0.

These two constraints can be conveniently resumed as:(
Ẋ ±X ′

)2
= 0 (38)

Taking into account the constraints equation the conjugate momenta have
simple expressions:

Pτµ =
1

2πα′
Ẋµ (39)

Pσµ = − 1

2πα′
Xµ′ (40)

In view of (40) we can say that free endpoint boundary conditions are
just Neumann boundary conditions, as we commented in section 2.

4.3 Wave equation and solution

Applying the constraints the equation of motion simplifes to a simple wave
equation:

Ẍµ −X ′′µ = 0 (41)

The most general solution to the wave equation is:

Xµ(τ, σ) =
1

2
(fµ(τ + σ) + gµ(τ − σ)) (42)
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Lets say that we want to study the case of an open string in a space
filling D-brane, in this case all the coordinates satisfy free endpoint boundary
conditions:

Pσµ(τ, σ = 0) =
∂Xµ

∂σ
(τ, σ = 0) =

1

2
(f ′µ(τ)− g′µ(τ)) = 0 (43)

So:

Xµ(τ, σ) =
1

2
(fµ(τ + σ) + fµ(τ − σ)) (44)

The boundary condition at the other endpoint yields:

Pσµ(τ, σ = π) =
∂Xµ

∂σ
(τ, σ = π) =

1

2
(f ′µ(τ + π)− f ′µ(τ − π)) = 0 (45)

So f ′µ is 2π periodic and therefore it admits a Fourier expansion:

f ′µ(u) = fµ1 +
∞∑
n=1

(aµn cos(nu) + bµn sin(nu)) (46)

The solution to the wave equation is then:

Xµ(τ, σ) = fµ0 + fµ1 τ +
∞∑
n=1

(Aµn cos(nτ) +Bµ
n sin(nτ)) cos(nσ) (47)

The constant fµ1 is related to momentum since pµ =
∫ π
0
Pτµdσ = 1

2πα′f
µ
1 .

We can make the Fourier expansion in terms of exponentials rather than sine
and cosine:

Xµ(τ, σ) = xµ0 + 2α′pµτ − i
√

2α′
∞∑
n=1

(
aµ∗n e

inτ − aµne−inτ
) cos(nσ)√

n
(48)

We introduce some new notation that will prove convenient:

αµ0 ≡
√

2α′pµ αµn ≡ aµn
√
n αµ−n ≡ aµ∗n

√
n (49)

We can write the solution to the wave equation in this new notation:

Xµ(τ, σ) = xµ0 +
√

2α′αµ0τ + i
√

2α′
∑
n6=0

1

n
αµne

−inτ cos(nσ) (50)

We have found solutions to the wave equation that satisfy the appropi-
ate boundary conditions, but we must also make sure that the constraints(
Ẋ ±X ′

)2
= 0 are satisfied. If we specify arbitrarily all the constants αµn,

the constraints will not be satisfied. In the next section we use the light-cone
gauge to find solutions that also satisfy the constraints.
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4.4 Light-cone solution of equations of motion

We select the light-cone gauge by chosing nµ =
(

1√
2
, 1√

2
, 0, ..., 0

)
then:

X+ ≡ n ·X = βα′p+τ (51)

p+ ≡ n · p =
2π

β
Pτ+ (52)

The rest of coordinates X2, ..., Xd are called transverse coordinates and
are generally denoted by XI . The constraint equations in this gauge read:

−2
(
Ẋ+ ±X ′+

)(
Ẋ− ±X ′−

)
+
(
ẊI ±X ′I

)2
= 0 (53)

Ẋ− ±X ′− =
1

βα′
1

2p+

(
ẊI ±X ′I

)2
(54)

Once the transverse coordinates are specified, X− is known up to a con-
stant of integration (a zero mode). X+ has a simple form due to our choice
of gauge so the dynamics of the string is almost entirely contained in the
transverse coordinates, this makes sense since in section 3.2 we realized that
longitudinal motion was irrelevant and only transverse velocity naturally ap-
pears in the action. The full evolution of the string is therefore determined
by the following set of objects:

XI(τ, σ), p+, x−0 (55)

The mode expansion of a transverse coordinate is just as (50):

XI(τ, σ) = xI0 +
√

2α′αI0τ + i
√

2α′
∑
n6=0

1

n
αIne

−inτ cos(nσ) (56)

By our choice of gauge:

X+(τ, σ) = 2α′p+τ =
√

2α′α+
0 τ (57)

The zero mode and the oscillations of the X+ coordinate have been set
to zero by the gauge fixing:

x+0 = 0 α+
n = α+

−n = 0 n = 1, 2, ...,∞ (58)

The X− coordinate being a linear combination of X0 and X1 has a similar
wave expansion:

X−(τ, σ) = x−0 +
√

2α′α−0 τ + i
√

2α′
∑
n6=0

1

n
α−n e

−inτ cos(nσ) (59)
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We find by direct calculation:

Ẋ− ±X−′
=
√

2α′
∑
n∈Z

α−n e
−in(τ±σ) (60)

ẊI ±XI′ =
√

2α′
∑
n∈Z

αIne
−in(τ±σ) (61)

Replacing (60) and (61) in (54) we find:

√
2α′α−n =

1

2p+

∑
p∈Z

αIn−pα
I
p (62)

So a full solution is specified by the values of:

p+, x−0 , xI0, αIn (63)

The quadratic combination of oscillators on the right-hand side of (62)
is a very important quantity so it has been given its own name. It is the
transverse Virasoro mode L⊥n :

L⊥n ≡
1

2

∑
p∈Z

αIn−pα
I
p (64)

For n = 0 and recalling that αµ0 ≡
√

2α′pµ we find:

√
2α′α−0 = 2α′p− =

1

p+
L⊥0 =⇒ 2p+p− =

1

α′
L⊥0 (65)

The mass of the string is given by:

M2 = −p2 = 2p+p− − pIpI =
1

α′

∞∑
n=1

naI∗n a
I
n (66)

This classical result will not survive quantization. First, M2 will become
quantized, and string states will not exhibit a continuous spectrum of masses.
Furthermore quantum mechanics will shift the formula by a constant.

5 Relativistic quantum open strings

5.1 Light-cone commutators

To quantize the classical theory we must impose appropiate equal-time com-
mutation relations among the coordinates and their conjugate momenta. The
Heisenberg operators are:

XI(τ, σ), x−0 (τ), PτI(τ, σ), p+(τ) (67)
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The only non-trivial commutation relations are:

[
XI(τ, σ),PτJ(τ, σ′)

]
= iηIJδ(σ − σ′)

[
x−0 (τ), p+(τ)

]
= −i (68)

5.2 Commutation relations for oscillators

It is convenient to recast the commutation relations in terms of oscillators,
to acccomplish this it will be useful to have at hand the following result:[(

ẊI ±X ′I
)

(τ, σ),
(
ẊJ ±X ′J

)
(τ, σ′)

]
=

= ±
[
ẊI(τ, σ), X ′J(τ, σ′)

]
±
[
X ′I(τ, σ), ẊJ(τ, σ′)

]
=

= ±4πα′iηIJ
d

dσ
δ(σ − σ′)

(69)

Also we can find:[(
ẊI ±X ′I

)
(τ, σ),

(
ẊJ ∓X ′J

)
(τ, σ′)

]
= 0 (70)

Lets define:

AI(τ, σ) ≡
√

2α′
∑
n∈Z

αIne
−in(τ+σ) =


(
ẊI +X ′I

)
(τ, σ) σ ∈ [0, π](

ẊI −X ′I
)

(τ,−σ) σ ∈ [−π, 0]

(71)
Using (69),(70) and (71) we find:

[
AI(τ, σ), AJ(τ, σ′)

]
= 4πα′iηIJ

d

dσ
δ(σ − σ′), σ, σ′ ∈ [−π, π] (72)

So: ∑
m′,n′∈Z

e−im
′(τ+σ)e−in

′(τ+σ′)
[
αIm′ , αJn′

]
= 2πiηIJ

d

dσ
δ(σ − σ′) (73)

The trick to extract only one term out of the sum is to perform in both sides
the integration 1

2π

∫ 2π

0
dσeimσ 1

2π

∫ 2π

0
dσ′einσ

′
:[

αIm, α
J
n

]
= mηIJδm+n,0 (74)

In terms of aIm and aJ†n the commutation relations are:[
aIm, a

J†
n

]
=

m√
mn

δm,nη
IJ = δm,nη

IJ (75)
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These are the typical communtation relations of a harmonic oscillator, we
recognise:

αIn are annihilation operators

αI−n are creation operators (n ≥ 1)
(76)

To complete the list of non-commuting objects we need to find the com-
mutator of xI0 and αJn. Integrate expresion (68) in

∫ π
0
dσ to get:[

xI0 +
√

2α′αI0τ, Ẋ
J(τ, σ′)

]
= 2α′iηIJ =

√
2α′iηij (77)∑

n′∈Z

[
xI0, α

J
n′

]
cos(n′σ′)e−in

′τ =
√

2α′iηIJ (78)

Integrate this relation over 1
π

∫ π
0
dσcos(nσ) with n ≥ 1 to obtain:[

xI0, α
J
ne
−inτ + αJ−ne

inτ
]

= 0 (79)

This is only possible if both commutators vanish separately thus we find[
xI0, α

J
n

]
= 0 for n 6= 0.

If n = 0 then we obtain
[
xI0, α

J
0

]
=
√

2α′iηIJ . So as expected
[
xI0, p

J
]

=
iηIJ .

5.3 Transverse Virasoro mode

We obtained the mode expansion of the string coordinates Xµ and con-
structed the mass operator before quantizing the theory. Upon quantization
some results become ambiguous due to ordering issues, so now that we have
a quatum theory we should solve these ambiguities.

Lets look at the transverse Virasoro modes defined in section 4.4: L⊥n ≡
1
2

∑
p∈Z αn−pIα

I
p, back there the oscillators were just numbers but in the quan-

tum theory they are non-commuting operators so is not clear which order is
the appropiate one. In fact the only ambiguous operator is L0.

L⊥0 =
1

2

∑
p∈Z

αI−pα
I
p =

1

2
αI0α

I
0 +

1

2

∞∑
p=1

αI−pα
I
p +

1

2

∞∑
p=1

αIpα
I
−p (80)

There is no doubt about how to order the first term on the right hand
side. The second term is normal-ordered (creation operators appear to the
left of annihilation operators), it is useful to have all our operators normal-
ordered so following this criteria we reorder the third term in normal order:
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1
2

∑∞
p=1 α

I
pα

I
−p = 1

2

∑∞
p=1 α

I
−pα

I
p + 1

2
(D − 2)

∑∞
p=1 p and so:

L⊥0 =
1

2
αI0α

I
0 +

∞∑
p=1

αI−pα
I
p +

1

2
(D − 2)

∞∑
p=1

p (81)

This expression is problematic because the last term is divergent but in fact
is not as crazy as it seems, introducing a regulator and understanding

∑∞
p=1 p

as the analytic continuation of the Riemman zeta function we have the result∑∞
p=1 p = − 1

12
. As we will show later this reasoning provides the right answer.

Lets define once and for all L⊥0 as:

L⊥0 ≡
1

2
αI0α

I
0 +

∞∑
p=1

αI−pα
I
p = α′pIpI +

∞∑
p=1

paI†p a
I
p (82)

And lets just call the reordering constant a. As it turns out the consis-
tency of the quantum theory will fix the value of a.

The mass operator is now modified as well:

M2 =
1

α′

(
a+

∞∑
n=1

naI†n a
I
n

)
(83)

5.4 Lorentz generators

The conserved charges due to Lorentz invariance were previously computed:

Mµν =

∫ π

0

Mτµν(τ, σ)dσ =

∫ π

0

(XµPτν −XνPτµ) dσ =

=
1

2πα′

∫ π

0

(
XµẊν −XνẊ

)
=⇒

Mµν = xµ0p
ν − xν0pµ − i

∞∑
n=1

1

n

(
αµ−nα

ν
n − αν−nαµn

) (84)

The third term of the Lorentz generators is quadratic in the oscillators.
In the quantum theory these oscillators are to be understood as operators so
again we are faced with the problem of making the right choice.

Lets focus on the generator M−I we might guess:

M−I = x−0 p
I − xI0p− − i

∞∑
n=1

1

n

(
α−−nα

I
n − αI−nα−n

)
(85)

A satisfactory quantum Lorentz generator should be both normal-ordered
and hermitian. Every term is already normal-ordered, however the second
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term in the guess above is not hermitian, we can fix this by making the
replacement xI0p

− −→ 1
2

(
xI0p

− + p−xI0
)
. Now we write p− and the minus

oscillators in terms of the Virasoro operators L⊥0 to obtain:

M−I = x−0 p
I − 1

4α′p+
(
xI0
(
L⊥0 + a

)
+
(
L⊥0 + a

)
xI0
)

− i√
2α′p+

∞∑
n=1

1

n

(
L⊥−nα

I
n − αI−nL⊥n

) (86)

The algebra of the Lorentz group requires
[
M−I ,M−J] = 0, can we ac-

comodate this result? Well lets see...

[
M−I ,M−J] = − 1

α′p+2

∞∑
m=1

(
αI−mα

J
m − αJ−mαIm

)
×{

m

[
1− 1

24
(D − 2)

]
+

1

m

[
1

24
(D − 2) + a

]} (87)

So it must be:

m

[
1− 1

24
(D − 2)

]
+

1

m

[
1

24
(D − 2) + a

]
= 0 ∀m ∈ Z+ (88)

This is only possible if each bracket separately vanishes, thus we conclude
D = 26 and a = −1. So imposing that the algebra of the Lorentz group be
satisfied we have found the dimension of the spacetime and also the ordering
constant of the transverse Virasoro mode. Indeed the argument

∑∞
p=1 p =

− 1
12

provided the same result for a but did not give any clue about the
dimension of the spacetime.

5.5 State space

In the quantum theory the mass spectrum is discrete and there are also
massless states with different polarizations so the quantum theory is able to
account for photons.

The ground states are specified by p+ and ~pT .
To create states from the ground states we act on them with creation

operators. The general basis state |λ〉 of the state space can be written as:

|λ〉 =
∞∏
n=1

25∏
I=2

(
aI

†

n

)λn,I
|p+, ~pT 〉 (89)
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We can define the operator N⊥ ≡
∑∞

n=1 na
I†
n a

I
n. It is called number

operator since when it acts on a basis state it returns as eigenvalue the sum
of the mode numbers of the creation operators appearing in the state.

It satisfies the following commutation relations:[
N⊥, aI†n

]
= naI†n (90)

[
N⊥, aIn

]
= −naIn (91)

The mass operator is in terms of the number operator:

M2 =
1

α′
(
−1 +N⊥

)
(92)

6 Relativistic quantum closed strings

6.1 Mode expansion and commutation relations

For closed strings the gauge fixing is:

n ·X = α′(n · p)τ n · p = 2πn · Pτ (93)

The parameterization is chosen so that σ ∈ [0, 2π]. We showed that
n ·Pσ is constant along the string, furthermore for open strings this quantity
vanishes since it vanish at the endpoints. We commented at the end of section
4.1 that these condition could be imposed even for closed strings.

The general solution for the wave equation is:

Xµ(τ, σ) = Xµ
L(τ + σ) +Xµ

R(τ − σ) (94)

The points σ = 0 and σ = 2π are to be identified since the parameter
space of a closed string is a cylinder and so we have a periodicity condition
rather than a boundary condition:

Xµ(τ, σ) = Xµ(τ, σ + 2π), ∀τ, σ (95)

Setting u ≡ τ + σ and v ≡ τ − σ we can write:

Xµ
L(u+ 2π)−Xµ

L(u) = Xµ
R(v)−Xµ

R(v − 2π) (96)

So we can write the mode expansion:

Xµ′

L (u) =

√
α′

2

∑
n∈Z

ᾱµne
−inu (97)
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Xµ′

R (v) =

√
α′

2

∑
n∈Z

αµne
−inv (98)

Integrating these relations we get:

Xµ
L(u) =

1

2
xLµ0 +

√
α′

2
ᾱµ0u+ i

√
α′

2

∑
n6=0

ᾱµn
n
e−inu (99)

Xµ
R(v) =

1

2
xRµ0 +

√
α′

2
αµ0v + i

√
α′

2

∑
n6=0

αµn
n
e−inv (100)

Upon integration two zero modes have appeared xLµ0 and xRµ0 but only
the sum of them is relevant. If the space is not simply connected then both
modes will play a role. Condition (96) implies ᾱµ0 = αµ0 this implies that
quantum closed string theory has only one momentum operator.

Assembling the left and right movers we obtain:

Xµ(τ, σ) =
1

2

(
xLµ0 + xRµ0

)
+
√

2α′αµ0τ+i
∑
n6=0

e−inτ

n

(
αµne

inσ + ᾱµne
−inσ) (101)

Xµ(τ, σ) = xµ0 +
√

2α′αµ0τ + i

√
α′

2

∑
n6=0

e−inτ

n

(
αµne

inσ + ᾱµne
−inσ) (102)

We find for the momentum:

pµ =

∫ 2π

0

Pτµ(τ, σ)dσ =
1

2πα′

∫ 2π

0

dσ
√

2α′αµ0 =

√
2

α′
αµ0 (103)

To quantize the theory we impose equal time commutation relations:[
x−0 , p

+
]

= −i (104)[
XI(τ, σ),PτJ(τ, σ′)

]
= iηIJδ(σ − σ′) (105)

Is more useful to cast the commutation relations in a set of discrete com-
mutation relations among oscillators. We find:[

ᾱIm, ᾱ
J
n

]
= mδm+n,0η

IJ (106)[
αIm, α

J
n

]
= mδm+n,0η

IJ (107)

Closed string theory thus has the operator content of two copies of open
string theory, except for zero modes. The momentum zero modes are equal
(αI0 = ᾱI0), and there is only one set of coordinates zero modes xI0,x

−
0 .
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6.2 Closed string Virasoro operators

Having two set of oscillators we also have two sets of transverse Virasoro
modes:

(
ẊI +XI′

)2
= 4α′

∑
n∈Z

(
1

2

∑
p∈Z

ᾱIpᾱ
I
n−p

)
e−in(τ+σ) ≡ 4α′

∑
n∈Z

L̄⊥n e
−in(τ+σ)

(108)

(
ẊI −XI′

)2
= 4α′

∑
n∈Z

(
1

2

∑
p∈Z

αIpα
I
n−p

)
e−in(τ−σ) ≡ 4α′

∑
n∈Z

L⊥n e
−in(τ−σ)

(109)

L̄⊥n =
1

2

∑
p∈Z

ᾱIpᾱ
I
n−p (110)

L⊥n =
1

2

∑
p∈Z

αIpα
I
n−p (111)

Plugging the definitions in (54) we obtain:

Ẋ− +X−
′
=

2

p+

∑
n∈Z

L̄⊥n e
−in(τ+σ) (112)

Ẋ− −X−′
=

2

p+

∑
n∈Z

L⊥n e
−in(τ−σ) (113)

But from mode expansion (102) we also have:

Ẋ− +X−
′
=
√

2α′
∑
n∈Z

ᾱ−n e
−in(τ+σ) (114)

Ẋ− −X−′
=
√

2α′
∑
n∈Z

α−n e
−in(τ−σ) (115)

We compare the equations above to read off the expressions for the minus
oscillators:

√
2α′ᾱ−n =

2

p+
L̄⊥n (116)

√
2α′α−n =

2

p+
L⊥n (117)
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Since α−0 = ᾱ−0 =⇒ L⊥0 = L̄⊥0 .
To fix the ordering ambiguities in the operators L⊥0 and L̄⊥0 we define

them to be ordered operators without any additional constansts.

L̄⊥0 =
α′

4
pIpI + N̄⊥ (118)

L⊥0 =
α′

4
pIpI +N⊥ (119)

In closed string theory the critical dimension of spacetime is dictated as
well by the requirement that the quantum theory is Lorentz invariant. The
same result D = 26 is found. It means that both kinds of strings open and
closed can coexist.

The ambiguities due to the ordering issues in L̄⊥0 and L⊥0 are also fixed
by the condition of Lorentz invariance, just as it happened for open strings.
Equations (116) and (117) for n = 0 and once the ordering ambiguities have
been taken into account become:

√
2α′ᾱ−0 =

2

p+
(
L̄⊥0 − 1

)
(120)

√
2α′α−0 =

2

p+
(
L⊥0 − 1

)
(121)

In account of these two equations we have:

√
2α′α−0 ≡

1

p+
(
L⊥0 + L̄⊥0 − 2

)
= α′p− (122)

Having an expression for p− we can write down the mass operator:

M2 =
2

α′
(
N⊥ + N̄⊥ − 2

)
(123)

7 D-branes

In section 5.1 we quantized open strings in a space-filling D-brane. Now we
go on to tackle more general cases in order of increasing complexity.

7.1 Single Dp-brane

When we have a Dp-brane we can set up spacetime coorinates xµ in such a
way that each coordinate is either tangential or normal to the brane.

23



x0, x1, ..., xp Dp tangential coordinates

xp+1, xp+2, ..., xd Dp normal coordinates
(124)

The string coordinates are equally split:

X0, X1, ..., Xp Dp tangential coordinates

Xp+1, Xp+2, ..., Xd Dp normal coordinates
(125)

The endpoints of the open string must end on the Dp-brane, therefore
the string coordinates normal to the brane must satisfy Dirichlet boundary
conditions:

Xa(τ, σ) |σ=0 = Xa(τ, σ) |σ=π = x̄a, a = p+ 1, ..., d (126)

Where x̄a are a set of constants that specify the location of the brane.
The Xa coordinates are called DD coordinates since both endpoints satisfy
a Dirichlet boundary condition. The open string endpoints can move freely
along the directions tangential to the D-brane. As a result, the string coor-
dinates tangential to the D-brane satisfy Neumann boundary conditions:

Xm′
(τ, σ)|σ=0 = Xm′

(τ, σ)|σ=π = 0 m = 0, 1, ..., p (127)

These are called NN coordinates since both endpoints satisfy a Neumann
boundary condition.

In order to use the light-cone gauge we need at least one spatial NN
coordinate that can be used to define X±. We need to assume p ≥ 1 and so
our analysis does not apply to D0-branes, this does not mean that D0-branes
do not exists but is rather a failure of our approach. In order to describe
D0-branes we need to use a Lorentz covariant quantization (Polyakov).

The NN coordinates X i(τ, σ) satisfy exactly the same conditions that are
satisfied by the light-cone XI(τ, σ) of open strings attached to a D25-brane.
The coordinate X+ = βα′p+τ by our gauge fixing, X− was determined in
terms of the transverse light-cone coordinates, the only difference is that
in the presence of a Dp-brane the index I is splitted into two indices i, a
depending on whether the transverse coordinate is tangential or normal to
the D-brane. Therefore:

Ẋ− ±X−′
=

1

2α′
1

2p+

(
ẊI ±XI′

)2
=

=
1

2α′
1

2p+

((
Ẋ i ±X i′

)2
+
(
Ẋa ±Xa′

)2) (128)
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In the presence of a Dp-brane the Lorentz symmetry of spacetime breaks:

SO(1, d) =⇒ SO(1, p)× SO(d− p) (129)

The mode expansion for the X i coordinates is known so we focus on the
Xa coordinates. They are solutions of the wave equation so:

Xa(τ, σ) =
1

2
(fa(τ + σ) + ga(τ − σ)) (130)

The Dirichlet boundary condition at σ = 0 dictates:

Xa(τ, 0) =
1

2
(fa(τ + σ) + ga(τ − σ)) = x̄a (131)

So then:

Xa(τ, σ) = x̄a +
1

2
(fa(τ + σ)− fa(τ − σ)) (132)

The boundary condition at σ = π reads:

fa(τ + π) = fa(τ − π) (133)

So being fa(u) a 2π periodic function it admits a Fourier series:

fa(u) = f̃a0 +
∞∑
n=1

(
f̃an cos(nu) + g̃an sin(nu)

)
(134)

Or in terms of τ and σ:

Xa(τ, σ) = x̄a +
∞∑
n=1

(
−f̃an sin(nτ) sin(nσ) + g̃an cos(nτ) sin(nσ)

)
(135)

We can rename the expansion coeffcients to write the mode expasion in
terms of oscillators:

Xa(τ, σ) = x̄a +
√

2α′
∑
n6=0

1

n
αane

−inτ sin(nσ) (136)

Note that in the expansion of the normal coordinates there is no linear
term in τ and so the string does not have net time-averaged momentum in
the normal directions. This certainly makes sense since strings must remain
attached to the D-brane.

Quantization process is as always, we need to establish commutation re-
lations among coordinates and conjugate momenta:[

Xa(τ, σ), Ẋb(τ, σ′)
]

= 2πα′iδabδ(σ − σ′) (137)
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In terms of oscillators we obtain just as before:[
αam, α

b
n

]
= mδabδm+n,0, m, n 6= 0 (138)

The mass operator is:

M2 =
1

α′

(
∞∑
n=1

[
αi−nα

i
n + αa−nα

a
n

]
− 1

)
(139)

A generic basis state is:[
∞∏
n=1

p∏
i=2

(
ai†n
)λn,i][ ∞∏

m=1

d∏
a=p+1

(
aa†m
)λm,a] |p+, ~p〉 (140)

Lets study the mass and the transformation behaviour of some states.

• The ground state:

|p+, ~p〉 , M2 = − 1

α′
(141)

This is just a Lorentz scalar field on the brane.

• First excited states, tangent to the brane:

ai†1 |p+, ~p〉 , i = 2, ..., p M2 = 0 (142)

These are (p − 1) massless states. They carry an index that lives on
the brane where there is SO(1, p) Lorentz symmetry so they transform as a
Lorentz vector on the brane. Since the number of states is equal the spacetime
dimensionality of the brane minus 2, these are clearly photon states. We have
found that a Dp-brane has a Maxwell field living on its world-volume.

• First excited states, normal to the brane:

aa†1 |p+, ~p〉 , a = p+ 1, ..., d M2 = 0 (143)

There are (d − p) massless states living on the brane. The index a is
not a Lorentz index so these are just scalar fields. We have found that on a
Dp-brane there is a massless scalar for every normal direction.
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7.2 Open strings between parallel Dp-branes

The setting in this case is two parallel D-branes of the same dimensionality.
The first brane is located at xa = x̄a1 and the second at xa = x̄a2, in this
situation we can have strings that begin and end at the same brane or strings
that stretch from one brane to the other. We talk about different sectors,
these are labeled by the Chan-Paton indices. If there are two branes there
are four different sectors: [11], [22], [12] and [21].

Lets study the sector [12] since is the only novelty. The NN string coor-
dinates X+, X− and X i are quantized just as before. The mode expansion
for stretched strings will be different since the boundary conditions have
changed. We find:

Xa(τ, σ) = x̄a1 + (x̄a2 − x̄a1)
σ

π
+
√

2α′
∑
n6=0

1

n
αane

−inτ sin(nσ) (144)

Again we find no linear term in τ and so no time-averaged momentum in the
xa direction. We set

√
2α′αa0 = 1

π
(x̄a2 − x̄a1), there is no contradiction because

the interpretation of α0 as momentum requires that it appears in Ẋ.
The mass operator picks up an extra term:

M2 =

(
x̄a2 − x̄a1

2πα′

)2

+
1

α′
(
N⊥ − 1

)
(145)

• Ground state:

|p+, ~p; [12]〉 , M2 = − 1

α′
+

(
x̄a2 − x̄a1

2πα′

)2

(146)

The mass can be negative, zero or positive depending on the separation
between the branes. If the separation of the branes vanishes we find tachy-
onic states, for the critical separation |x̄a2 − x̄a1| = 2π

√
α′ the ground state

represents a massless scalar field and for larger separations a massive scalar
field.

• Normal first excited states:

aa†1 |p+, ~p; [12]〉 , a = p+ 1, ..., d, M2 =

(
x̄a2 − x̄a1

2πα′

)2

(147)

These are (d−p) massive states. Since there is no Lorentz symmetry outside
the brane these are just scalar fields.

• Tangent first excited states:
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ai†1 |p+, ~p; [12]〉 , i = 2, ..., p, M2 =

(
x̄a2 − x̄a1

2πα′

)2

(148)

These are (p− 1) massive states. They carry an index corresponding to the
(p + 1)-dimensional spacetime, the world-volume of the brane. We might
think that these states make up a massive Maxwell gauge field, but this is
not possible we are missing one state.

A massive gauge field has one more state than a massless one. In a
D-dimensional spacetime, a massless gauge field has D − 2 states, while a
massive gauge field has D− 1 states. In the present case one of the tachyons
states must join the (p− 1) states to form the massive vector. At the end we
are left with a massive vector and d− p− 1 massive scalars.

It turns out that the state that joins in to make up the massive vector is:∑
a

(x̄a2 − x̄a1) a
a†
1 |p+, ~p; [12]〉 (149)

In the limit as the two branes approach each other they are still distinguish-
able and we still have the four sectors. The massless open string states which
represent strings extending from brane one to brane two include a massless
gauge field and (d − p) massless scalars. This is the same field contents as
that of a sector where strings begin and end on the same D-brane. When the
two D-branes coincide we therefore get a total of four massless gauge fields.
These gauge fields actually interact with one another - in the string picture
they do so by the process of joining endpoints. Theories of interacting gauge
fields are called Yang-Mills theories. More precisely we have a U(2) Yang-
Mills theory with some additional interactions that become negligible at low
energies. In general N coincident D-branes carry U(N) massless gauge fields.
This result is quite important since our current understanding of high energy
physics is based on Yang-Mills theories. Electroweak theory and QCD are
examples of Yang-Mills theories.

8 T-duality of closed strings

String theory requires as a consistency condition that the spacetime dimen-
sion be a certain number. In section 5.4 we found that D = 26. It may
be thought that such a strong requirement should be perceived just by our
senses, however classical physics and even quantum field theory work in four
dimensions so all the coordinates can not be on the same footing. String the-
ory offers an explanation for the fact that at low energies many dimensions
remain hidden. The idea is that these extra dimensions are compactified.
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We will find that in the presence of compact dimensions a new symmetry
arises.

8.1 Compact dimensions

Imagine a spacetime where one dimension, say x25, has been compactified,
this means: x ∼ x+2πR. We drop the superscript and refer to x25 as simply
x. In this case the topology of spacetime is non-trivial in the sense that not
every closed curve can be shrunk to a point, namely those that wind around
the compact dimension. In this circumstances the periodicity condition does
not apply, instead:

X(τ, σ + 2π) = X(τ, σ) +m(2πR) (150)

Where m is the winding number. We define the winding as: ω ≡ mR
α′ .

8.2 Left and right movers

The left and right movers are:

XL(u) =
1

2
xL0 +

√
α′

2
ᾱ0u+ i

√
α′

2

∑
n6=0

ᾱn
n
e−inu (151)

XR(v) =
1

2
xR0 +

√
α′

2
ᾱ0v + i

√
α′

2

∑
n6=0

αn
n
e−inv (152)

The condition (150) translates into:

ᾱ0 − α0 =
√

2α′ω (153)

The momentum of the string along the compact dimension is:

p =
1

2πα′

∫ 2π

0

(
ẊL + ẊR

)
dσ =

1√
2α′

(α0 + ᾱ0) (154)

So we have:

p =
1√
2α′

(α0 + ᾱ0) (155)

ω =
1√
2α′

(α0 − ᾱ0) (156)

These expressions suggest that the winding ω is on the same footing as the
momentum p. Since we have two momenta we should expect two coordinates
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zero modes. We rewrite xL0 = x0 + q0 and xr0 = x0 − q0, thus introducing the
average coordinate x0 and the coordinate difference q0. We can then write:

XL(τ + σ) =
1

2
(x0 + q0) +

α′

2
(p+ ω) (τ + σ) + i

√
α′

2

∑
n6=0

ᾱn
n
e−in(τ+σ) (157)

XR(τ − σ) =
1

2
(x0 − q0) +

α′

2
(p− ω) (τ − σ) + i

√
α′

2

∑
n6=0

αn
n
e−in(τ−σ) (158)

The full coordinate is:

X(τ, σ) = x0 + α′pτ + α′ωσ + i

√
α′

2

∑
n6=0

e−inτ

n

(
ᾱne

−inσ + αne
inσ
)

(159)

In this expansion the only evidence of a compact dimension is the winding
term α′ωσ. The zero mode q0 is not present here.

8.3 Quantization and commutators relations

The commutation relation [X(τ, σ),P(τ, σ′)] = iδ(σ − σ′) leads to:

[ᾱm, ᾱn] = [αm, αn] = mδm+n,0, [αm, ᾱn] = 0 (160)

On account on (155),(156) and (160) it follows: [p, ω] = 0
Also: [p, ᾱn] = [p, αn] = [ω, ᾱn] = [ω, αn] = 0
To find the commutation relations of x0 with the other operators we use

the result: [
X(τ, σ),

(
Ẋ(τ, σ)±X ′(τ, σ′)

)]
= 2πα′iδ(σ − σ′) (161)

Integrated over σ ∈ [0, 2π] we have:[
x0,
(
Ẋ(τ, σ)±X ′(τ, σ′)

)]
= α′i (162)

We thus learn: [x0, α0] = [x0, ᾱ0] = i
√

α′

2
. And also: [x0, p] = i and

[x0, ω] = 0.
Note that all the operators than appear in the mode expansion of X(τ, σ)

commutes with the winding ω. We could thus think that the winding is a
constant of the motion and this would mean that each winding corresponds
to a different sector. This interpretation treats p and ω in quite different
way. Another interpretation is that ω is an operator, just like p, and that
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the eigenvalues of ω correspond to the various possible windings. This will
turn out to be the more natural interpretation.

The compactification of the x coordinate implies that after a translation
by 2πR we return to the same point so since p is the generator of translations
we have:

1 = eip2πR =⇒ p =
n

R
, n ∈ Z (163)

Note that the result of the compactification has been to lose some momen-
tum states, but also we gained some states the winding states. Furthermore
note that the eigenvalues of momentum and winding transmute into one
another under the transformation R =⇒ α′

R
:

p =
n

R
=⇒ nR

α′
(164)

ω =
mR

α′
=⇒ m

R
(165)

This feature is the responsible for T-duality. T-duality states that the
physics is the same if the compactification radius is R or if it is R̃ = α′

R
.

To prove it in full detail we would have to find an isomorphism between
the two pictures that preserves all the commutation relations and takes one
Hamiltonian into the other.

9 T-duality of open strings

Lets consider the propagation of an open string in a space-filling D25-brane,
in this situation all coordinates are NN coordinates and the endpoints can
move around the whole space. Assume that one dimension has been com-
pactified: x25 ∼ x25 + 2πR. In the presence of compact dimensions closed
strings exhibit fundamentally new states: non-trivial winding states are now
possible. However open strings exhibit no fundamentally new states in the
presence of a compact dimension, an open string can always be shrunk to
a point and so there is no winding ω25. The open string momentum in the
compactified dimension is quatized: p25 = n

R
.

Now consider the dual picture, wich is just as before but this time the
compactification radius is the dual radius R̃ = α′

R
. In this new spacetime

the momentum is quantized with eigenvalues p25 = nR
α′ . It is clear that the

spectrum of these two pictures is not the same. In seems that T-duality is
not a symmetry in the presence of open strings.

There is a solution out of the problem, the key is to allow that T-duality
does not only change the compactification radius but also the dimension of
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the D-brane. In the dual picture the radius of compactification is R̃ = α′

R

and the brane is a D24-brane, in this situation the X25 coordinate is a DD
coordinate. By convention we set x25 = 0 to be the position of the brane
along the compact dimension.

In this dual world all open string endpoints must remain attached to the
D24-brane defined by x25 = 0. As a result, there are new open string config-
urations that can not be contracted away. Since X25 is now a DD coordinate
there is no momentum along this direction. This is remarkable, momen-
tum has disappeared but instead winding has appeared. This mechanism
preserves T-duality even in the presence of open strings.

Lets show how this ideas work explicitly. Recall the mode expansion of a
NN coordinate. For X25(τ, σ) ≡ X(τ, σ):

X(τ, σ) = x0 +
√

2α′α0τ + i
√

2α′
∑
n 6=0

1

n
αn cos(nσ)e−inτ (166)

We also have: α0 =
√

2α′p =
√

2α′ n
R

since the momentum on the circle
is quantized.

We can separate the string coordinate X into left and right movers:

X(τ, σ) = XL(τ, σ) +XR(τ − σ) (167)

XL =
1

2
(x0 + q0) +

√
α′

2
α0(τ + σ) +

i

2

√
2α′
∑
n6=0

1

n
αne

−inτe−inσ (168)

XR =
1

2
(x0 − q0) +

√
α′

2
α0(τ − σ) +

i

2

√
2α′
∑
n6=0

1

n
αne

−inτeinσ (169)

The constant q0 is arbitrary. Inspired by closed string T-duality, where
we reversed the sign of the right movers we define:

X̃(τ, σ) ≡ XL −XR (170)

X̃(τ, σ) = q0 +
√

2α′α0σ +
√

2α′
∑
n6=0

1

n
αne

−inτ sin(nσ) (171)

This is, in fact, the mode expansion for a string that stretches from one
D-brane to another, as we can see by comapring with (144).

Our previous work with Xa and Pa shows that X̃ and P̃ satisfy the
canonical commutation relations. Therefore the duality transformation does
not alter the commutation relations.
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We can now turn to the physical interpretation. The coordinate X̃ is of
DD type, since the endpoints are fixed: ∂τX̃ = 0 for σ = 0 and σ = π. When
σ goes from 0 to π, the open string stretches an interval:

X̃(τ, π)− X̃(τ, 0) =
√

2α′(π − 0) = 2πα′p = 2π
α′

R
n = 2πR̃n (172)

This equations holds for every integer so the picture that emerges is that
of an infinite collection of D24-branes with a uniform spacing 2πR̃ along the
x25 direction. Such a configuration is indeed equivalent to a single D24-brane
at some fixed position on a circle of radius R̃.

It is interesting to note that T-duality interchanges boundary conditions.
We have:

∂σ = X ′L(τ + σ)−X ′R(τ − σ) = ∂τX̃ (173)

∂τ = X ′L(τ + σ) +X ′R(τ − σ) = ∂σX̃ (174)

10 Electromagnetic fields on D-branes

In section 7.1, we learned that there is a Maxwell field living in the world
volume of a Dp-brane, this Maxwell field couples to the open string endpoints
in the following way:

S =

∫
dτdσLNG(Ẋ,X ′) +

∫
dτAm(X)

dXm

dτ
|σ=π −

∫
dτAm(X)

dXm

dτ
|σ=0

(175)
We will consider only constant background fields, in this situation the po-
tential can be written as: An(x) = 1

2
Fmnx

m.
Varying the action we obtain the following boundary condition:

Pm + Fmn∂τX
n = 0, σ = 0, π (176)

In the light-cone gauge this equation simplyfies to:

∂σXm − 2πα′Fmn∂τX
n = 0, σ = 0, π (177)

Note that this boundary condition is of mixed type, it is neither Neumann
nor Dirichlet.

10.1 D-branes with electric fields

Assume we have a Dp-brane with a background constant electric field that
points along a compact direction. Our purpose is to describe how the situta-
tion looks like in the dual picture. The claim is that we have a D(p-1)-brane
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moving along the dual circle and no electric field. The constraint that the
brane can not move faster than the speed of light will constraint the magni-
tude of the electric field.

Consider a Dp-brane that wraps around a compact dimension x25 of ra-
dius R, and assume that the brane carries an electric field along this direction:
F25,0 = E25 ≡ E. The boundary conditions are:

∂σX
0 − E∂τX = 0 (178)

∂σX − E∂τX0 = 0 (179)

Where we have introduced the dimensionless electric field E = 2πα′E.
We can rewrite these boundary conditions in a more appropiate form

using the light cone derivatives ∂+ and ∂−:

∂+X
0 − E∂+X = ∂−X

0 + E∂−X (180)

−E∂+X0 + ∂+X = E∂−X0 + ∂−X (181)

Solving for ∂+X
0 and ∂+X gives:

∂+

(
X0

X

)
=

(
1+E2
1−E2

2E
1−E2

2E
1−E

1+E2
1−E2

)
∂−

(
X0

X

)
(182)

Indeed the ligh-cone derivatives have proven to be more useful in this
case, since now the boundary conditions are expressed as an invertible linear
relation. We also need to express in these coordinates the Dirichlet and
Neumann boundary conditions, an the T-duality relations as well.

If X is a Neumann coordinate then:

∂+

(
X0

X

)
=

(
1 0
0 1

)
∂−

(
X0

X

)
(183)

If X̃ is a Dirichlet coordinate then:

∂+

(
X0

X̃

)
=

(
1 0
0 −1

)
∂−

(
X0

X̃

)
(184)

The dual coordinate X̃ is obtained by changing the sign of the right
movers in X, so the duality relations are:

∂+X = ∂+X̃ (185)

∂−X = −∂−X̃ (186)
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Now we can prove our claim. In the dual world there is a D(p-1)-brane
that rotates along the dual radius and no electric field so we have that X̃
must be a Dirichlet coordinate, therefore:

∂+

(
X ′0

X̃ ′

)
=

(
1 0
0 −1

)
∂−

(
X ′0

X̃ ′

)
(187)

The prime mean that we are using coordinates where the D(p-1)-brane
is at rest. We can boost it back to the frame where the original Dp-brane is
at rest, the boost is:(

X ′0

X̃ ′

)
= γ

(
1 −β
−β 1

)(
X0

X̃

)
≡M

(
X0

X̃

)
(188)

Substitue (188) into (187) to obtain the boundary conditions in the frame
where the Dp-brane is at rest.

∂+

(
X0

X̃

)
= M−1

(
1 0
0 −1

)
M∂−

(
X0

X̃

)
(189)

Finally we can perform a T-duality transformation on the X̃ coordinate
using (185) and (186), this can be accomplished by just introducing an ap-
propiate matrix:(

X0

X̃

)
= M−1

(
1 0
0 −1

)
M

(
1 0
0 −1

)
∂−

(
X0

X̃

)
(190)

∂+

(
X0

X

)
=

(
1+β2

1−β2
2β

1−β2

2β
1−β

1+β2

1−β2

)
∂−

(
X0

X

)
(191)

These are the open string boundary conditions for the theory dual to the
moving D(p-1)-brane. As promised, they coincide with (182), which were
written for a Dp-brane carrying an electric field, if we identify:

E ≡ 2πα′ = β (192)

The constrain β ≤ 1 implies that EMAX = 1
2πα′ = T0.

10.2 D-branes with magnetic fields

Assume we have a Dp-brane with a background constant magnetic field that
points along a compact direction. Our purpose is to describe how the situta-
tion looks like in the dual picture. The claim is that we have a D(p-1)-brane
tilted along the dual circle and no magnetic field.
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Consider a Dp-brane for which two directions of its world-volume lie on
the (x2, x̃3) plane. Assume that the x̃3 dimension is compactified into a circle
of radius R̃, and assume that the brane carries a magnetic field F23 = B.
The boundary conditions are:

∂σX
2 − B∂τX̃3 = 0 (193)

∂σX̃
3 + B∂τX2 = 0 (194)

Where we have defined the dimensionless magnetic field B ≡ 2πα′B. In
terms of light-cone derivatives the boundary conditions are:

∂+

(
X2

X̃3

)
=

(
1−B2
1+B2

2B
1+B2

−2B
1+B2

1−B2
1+B2

)
∂−

(
X2

X̃3

)
(195)

Since X ′2 and X ′3 are Neumann and Dirichlet respectively we can write:

∂+

(
X ′2

X ′3

)
=

(
1 0
0 −1

)
∂−

(
X ′2

X ′3

)
(196)

The prime indicates that this relations hold in the rotated frame, we can
go back to the original fram by performing a rotation:(

X ′2

X ′3

)
=

(
cosα sinα
− sinα cosα

)(
X2

X3

)
≡ R

(
X2

X3

)
(197)

Plugging (197) in (196) we find:

∂+

(
X2

X3

)
= R−1

(
1 0
0 −1

)
R∂−

(
X2

X3

)
(198)

Now we perform the T-duality transformation that takes X3 to X̃3. This
is done by including an additional matrix on the right hand side above:

∂+

(
X2

X̃3

)
= R−1

(
1 0
0 −1

)
R

(
1 0
0 −1

)
∂−

(
X2

X̃3

)
(199)

∂+

(
X2

X̃3

)
=

(
cos 2α − sin 2α
sin 2α cos 2α

)
∂−

(
X2

X̃3

)
(200)

This expression matches (195) provided that:

B ≡ 2πα′B = − tanα (201)
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11 Nonlinear and Born-Infeld electrodynam-

ics

In classical electrodynamics we are introduced to the concepts of electric and
magnetic fields and we are encouraged to think about these as the agents that
cause certain phenomena. When we study classical electrodynamics in the
presence of materials the auxiliary fields ~D and ~H become more useful since
their sources are the charges that we can modify at will in the laboratory but
in the back of our mind we still think that the fundamental quantities are ~E
and ~B together with all the charges: free and bound. The two sets ( ~E, ~B)

and ( ~D, ~H) are related by some equations depending on the properties of the
material at hand, usually this relations is highly nonlinear.

In nonlinear electrodynamics the vaccum itself becomes a very complex
media that can be polarized. This suggest that we should think about ( ~D, ~H)

as being just as fundamental as ( ~E, ~B) if not more. There are some La-
grangians that provide us with the nonlinear relations between the two sets
in addition to the equation of motion for the set ( ~D, ~H).

As we have seen in section 10.1 electric fields can not be arbitrarily large.
Maxwell Lagrangian does not incorporate such a constraint, therefore we are
motivated to seek new Lagrangians.

Consider the Lagrangian:

L = −b2
√
− det

(
ηµν +

1

b
Fµν

)
+ b2 (202)

It has many nice features:

• It makes sense in any number of dimensions.

• It reduces to the Maxwell Lagrangian for small fields. Examine the
Lagrangian for a spacetime of dimension four to obtain:

L = −b2
√

1− 2s

b2
− p2

b4
+ b2 (203)

Where:

s ≡ −1

4
F µνFµν =

1

2
(E2 −B2) = LMaxwell (204)

p ≡ −1

4

(
1

2
εµνρσFρσ

)
Fµν = ~E · ~B (205)

In case the is no magnetic field or more generally whenever p vanishes:

L = −b2
√

1− 2s

b2
+ b2 = −b2

(
1− s

b2

)
+ b2 +O(s2) = s+O(s2) (206)
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• If there is no magnetic field the electric field is bounded. If B = 0:

L = −b2
√

1− E2

b2
+ b2 (207)

Since the argument of the square root can not become negative we
obtain: E ≤ b, setting b = 2πα′ we recover the result obtained in
section 10.1.

• The self-energy of a point particle is finite.

We need to find the energy density:

L = −b2
√

1− E2

b2
+ b2 (208)

~D =
∂L
∂ ~E

=
~E√

1− E2

b2

=⇒ ~E =
~D√

1 + D2

b2

(209)

H = ~E · ~D − L = b2
√

1 +
D2

b2
− b2 (210)

Now we integrate over the whole space:

UQ =

∫
d3xH = b2

∫ ∞
0

4πr2dr

√1 +

(
Q

4πbr2

)2

− 1


=

√
b

4π
Q

3
2

∫ ∞
0

dx
(√

1 + x4 − x2
)

=
1

4π

1

3

(
Γ

(
1

4

))2

b
1
2Q

3
2

(211)
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