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Abstract

This document introduces several principles known from quantum field theory and
examines what conformal invariance implies for these. The main part of this report will
be the calculation of the central charge for the free boson and the free fermion under
conformal invariance.

1 Basic Definitions

First of all here are some definitions, which will be used later on.

Definition 1 (Chiral Antichiral Fields)

A chiral field is a field only dependent on z, whereas an antichiral field only depends on z

As shown in the previous report a conformal transformation is for example a rescaling. In
order to get a conformal invariant field one can define the conformal dimensions as follows:

Definition 2 (Conformal Dimension)

φ(z, z) 7→ λhλ
h
φ(λz, λz)

The quantities h and h are called the conformal dimensions.

Definition 3 (Primary field)

For a general conformal transformation f(z) the field φ is called primary if it transforms
like:

φ(z, z) 7→ φ′(z, z) =

(
∂f

∂z

)h(∂f
∂z

)h
φ
(
f(z), f(z)

)
(1)

2 Correlation Functions

In quantum field theory correlation functions describe scattering processes. Here their invari-
ance is of huge importance because we can calculate the structure of two-point and three-point
correlation functions up to a constant assuming conformal invariance. The definition for cor-
relation functions can be derived with the means of the Feynman path integral formalism.
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Definition 4 (Correlation functions)

〈T (φ(t1)φ(t2) . . . φ(tN ))〉 =

∫
[dφ]φ(t1)φ(t2) . . . φ(tN ) exp (iSε[φ(t)])∫

[dφ] exp (iSε[φ(t)])

The T indicates that the following operators are time ordered. This has to be included since it
does not make sense to have operators of the past acting on operators of the future. Physically
this means that a measurement of the future would influence the measurement in the past.
This is obviously not what happens. In the following the time ordering will always be applied
without explicitly mentioning it.

2.1 Two point functions

We are now going to use the invariance under conformal transformations to show how an
arbitrary two point function looks like. The restrictions are sufficient enough to determine
the two point function up to a constant.

〈φ1(z)φ2(ω)〉 = g(z, ω)

With translational invariance (f(z) = z + a) one can conclude that g(z, w) only depends on
the difference of the two vectors z, ω.

g(z, ω) = g(z − w)

Let’s take a look at a rescaling. From the definition of the primary fields we know that the
following must hold.〈

λh1φ1(λz)λ
h2φ2(λω)

〉
= λh1+h2g (λ(z − ω))

!
= g(z − ω)

In order to fulfill this equation the two point function has to look like:

g(z − ω) =
d12

(z − ω)h1+h2

One can still restrict the two-point function further by looking at the special conformal trans-
formation. Those transformations are compositions of inversions with translations. Since
translations were already taken care of one can just take a look at a inversion f(z) = −1

z .

〈φ1(z)φ2(ω)〉 =

〈
1

z2h1
1

ω2h2
φ1(−

1

z
)φ2(−

1

ω
)

〉
=

1

z2h1ω2h2

d12

(−1
z + 1

ω )h1+h2
!

=
d12

(z − w)h1+h2

With this identity one needs to restrict the two-function further by demanding that h1 =
h2. So in the end the conformal invariant two-point-function looks like the following.

〈φ1(z)φ2(ω)) =
d12δij

(z − ω)2hi
(2)
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2.2 Three point functions

With the same line of reasoning one can find again an expression for the Three-point-function
up to some constant. Again this can be obtained by using the symmetries for translation,
rescaling and inversion. With the definition of zij = zi − zj

〈φ1(z1)φ2(z2)φ3(z3)〉 =
C123

zh1+h2−h312 zh2+h3−h123 zh1+h3−h213

(3)

For any higher number correlation function one has not enough restrictions to write it in
a similar way as above.

3 Energy Momentum Tensor

From Noether’s Theorem one knows that any symmetry can be related to a conserved current
(∂νj

ν = 0). This current can be calculated and looks like this.

jµ = ηµνLων − ων∂νφ
L

∂(∂µφ)

Definition 5 (Energy Momentum Tensor)

The quantity Tµν is called energy momentum tensor and is defined such that jµ = ωνT
µν

By assuming conformal symmetry one can find that the energy momentum tensor has
some important properties.
First one can consider the simplest conformal transformation: an arbitrary translation. The
current has to be conserved no matter what conformal transformation is considered, so it has
to be conserved under translations.

0 = ∂µj
µ = ∂µ(ωνT

µν) = ων(∂µT
µν)

The last equality holds because the derivative of ω for a translation vanishes. One will thus
get.

∂µT
µν = 0 (4)

Now we will prove that the energy momentum tensor is symmetric. The conserved current
has to stay the same under rotations ων = mµνx

ν where m is antisymmetric (mµν = −mνµ).

0 = ∂µj
µ = ∂µ(Tµνmνρx

ρ)

=
1

2
∂µmνρ(T

µνxρ − Tµρxν)

= (∂µT
µν)xρ + (∂µT

µρ)xν + T ρν + T ρν

The first two terms vanish because of equation 4 giving us the symmetry condition of
the energy momentum tensor. Now consider an arbitrary conformal transformation. The
invariance under this transformation will yield yet another property of the energy momentum
tensor.
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0 = (∂µων)Tµν + (∂µT
µν)ων

The second term vanishes because of the property from 4 above. With the symmetry condition
of the energy momentum tensor one will get to the following.

0 =
1

2
Tµν(∂µων + ∂νωµ) =

1

d
Tµµ ∂ω (5)

Since ω was arbitrary the only way the right term vanishes, is if the energy momentum tensor
is traceless.

3.1 Energy Momentum Tensor in 2D

The derivations until now are valid for any dimension, but in the case of d = 2 one finds some
further properties of the energy momentum tensor. With the transformation rules z = x0+ix1
and z = x0 − ix1 one can shift to complex coordinates. The quantities Tij are the energy
momentum parts in real coordinates. In the following the properties derived in the chapter
above were used to simplify the equations.

Tzz =
1

4
(T00 − 2iT10 − T11) =

1

2
(T00 − iT10)

Tzz =
1

4
(T00 + 2iT10 − T11) =

1

2
(T00 + iT10)

Tzz = Tzz =
1

4
Tµµ = 0

Again with the property from above one will find the following:

∂zTzz =
1

4
(∂0 + i∂1) (T00 − iT10)

=
1

4
(∂0T00 + ∂1T10 − i∂1T11 − i∂0T01) = 0

With the same calculation can be conducted with Tzz and it can be seen that there is only a
chiral and an antichiral field.

2πTzz(z, z) = T (z) 2πT zz(z, z) = T (z)

4 Time ordering & radial ordering

As mentioned before time ordering is of major importance for the description of a physical
system. A two dimensional system can be thought of as the surface of a cylinder (see fig 1).
Here x0 describes the time and x1 is the coordinate for space.
One can map this cylinder to the complex plane with the help of the exponential function.
Now the bigger the radius is, the further in the future the event takes place. Temporal ordering
is now expressed by radial ordering.
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Figure 1: Mapping from the cylinder to the complex plane

5 Conserved Charge

Noethers Theorem implies a conserved current. Furthermore one can get from the current a
conserved charge.

∂µj
µ =

∂j0

∂t
+
∂ji

∂xi

Now, one can integrate over the whole space and use that the current vanishes in infinity.∫
dx
∂j0

∂t
= 0

This leads to the definition of the conserved charge.

Definition 6 (Conserved Charge)

Q =

∫
dx1j0 =

1

2πi

∮
C

(
dzT (z)ε(z) + dzT (z)ε(z)

)
From quantum field theory one can calculate that the conserved charge is a generator of

the infinitesimal conformal transformations.

δφ = [Q,φ]

Plugging in the definition for the conformal charge one will get some integral description of
an infinitesimal (conformal) transformation. This can be compared to the first order Taylor
expansion of the primary field:

δε,εφ(z, z) =
(
h∂ε(z) + ε(z)∂ + h∂ε(z) + ε(z)∂

)
φ(z, z)

The complete derivation will be done in the following paper from Pascal Debus. The result
of this calculation will be the operator product expansion. With this OPE one can easily find
out the value for the conformal dimension of a primary field.

R (T (z)φ(ω, ω)) =
h

(z − ω)2
φ(ω, ω) +

∂ω
z − ω

φ(ω, ω) + . . . (6)
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Now most of the important principles are known such that the calculation of the free boson
can be understood.

6 The Free Boson in 2D

6.1 Variational Principle

The action of a free Boson looks like

S = κ

∫
dzdz∂X(z, z)∂X(z, z)

By using variational principle one imposes that the action is extremal under small variances
of the path.

0 = δS = κ

∫
dzdz

(
∂δX(z, z)∂X(z, z) + ∂X(z, z)δ∂X(z, z)

)
= κ

∫
dzdz

[
∂
(
δX∂

)
− δ∂∂X + ∂ (δX∂X)− δX∂∂X

]
= κ

∫
dzdz2δX∂∂X

So the field Xcan be written as a sum of a chiral and an antichiral field. X(z, z) = x(z)+x(z).

6.2 Two point function

The two point function can be derived by looking at the action. It has to be a propagator.
Here is just the sketch of the derivation.

S = κ

∫
d2x∂νφ(x)∂νφ(x) = κ

∫
d2xd2yφ(x)A(x, y)φ(y)

With the quantity A = −κδ(2)(x − y)∂2x. The inverse of this quantity is just the two point
function. With the use of the representation of the delta distribution one will get:

〈φ(x)φ(w)〉 = − 1

zκ4π
log(x− y)2

To get back to complex coordinates one just has to apply the transformations.

〈X(z, z)X(ω, ω)〉 = − 1

κ2π
(log(z − ω) + log(z − ω)) (7)

But we know that this is not a primary field, since we calculated already what the structure
of a primary field for a conformal invariant theory is like. In the following the calculation will
only be conducted for the chiral part of the two point function. Similarly one can perform
the calculation for the antichiral field. Now what about ∂X?

〈∂zx(z)∂ωx(ω)〉 = ∂z
1

4πκ

1

z − ω
= − 1

4πκ

1

(z − ω)2
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This is indeed a two point function of the structure we calculated before. By comparison
with 2 one will get a first guess that the conformal dimension will be 1. The prove will need
the operator product expansion of T (z)x(z). But first the energy momentum tensor has to
be calculated.

6.3 Energy Momentum Tensor

By looking at the action the Langrange density can be obtained as L = κ∂X∂X. To get the
energy momentum tensor from the Lagrange density by using the definition of the conserved
current. One will find that the chiral and antichiral parts look like the following.

T (z) = 2πκ∂X∂X T (z) = 2πκ∂X∂X

There is still a problem which arises in quantum field theory. The vacuum expectation
value of the energy is singular. Thus one has to find a way to ’subtract infinity’. This is done
with normal ordering.

Definition 7 (Normal ordering)

: φ(z)φ(z) := lim
ω→z

(φ(ω)φ(z)− 〈φ(ω)φ(z)〉)

6.4 Wicks theorem

With the help of Wick’s theorem any time ordered product can be written as a sum of normal
ordered products. The proof can be found in any standard quantum field theory book and
will not be performed here. All properties which are important for the calculation are stated
in this section.
Definition 8 (Contraction)

A contraction is defined as:

: φ1φ2φ3φ4 :=: φ1φ3 : 〈φ2φ4〉

This definition suffices to state Wick’s Theorem.
Theorem 1 (Wick’s Theorem)

A time ordered product is equal to the normal ordered product, plus all possible contrac-
tions.

As an example for a time ordered product of four variables one will get this idendity:

T (φ1φ2φ3φ4) = : φ1φ2φ3φ4 : + : φ1φ2φ3φ4 : + : φ1φ2φ3φ4 : + : φ1φ2φ3φ4 :

+ : φ1φ2φ3φ4 : + : φ1φ2φ3φ4 : + : φ1φ2φ3φ4 : + : φ1φ2φ3φ4 :

+ : φ1φ2φ3φ4 : + : φ1φ2φ3φ4 :
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This theorem makes sense if one knows that many parts of the sum are vanishing. For example
in vacuum the expectation value of any normal ordered product is zero. Thus only double
contractions remain i.e. the last three contractions from above. Also from the definition of
normal ordering one can see that the contraction of a already normal ordered product is 0.

: φ1φ2 := lim
ω→z

φ1(ω)φ2(z)− 〈φ(ω)φ(z)〉 = 0

Now all the tools are available for the calculation of the conformal dimension of the field ∂X.

T (z)∂ωx(ω) = 2πκ : ∂zx(z)∂zx(z) : ∂ωx(ω)

≈ 2πκ (2 〈∂zx(z)∂ωx(ω)〉 ∂x(z))

≈ 1

(z − ω)2
∂zx(z)

But in comparison with the operator product expansion one needs the ∂x(z) dependent on
ω. Thus a Taylor expansion is necessary and the result will be

T (z)∂x(ω) =
∂x(ω)

(z − ω)2
+

1

z − ω
∂2x(ω) + . . .

This gives us proof that ∂x is indeed a primary field with conformal dimension of h = 1.

6.5 In- and Outstates

Consider Laurent expansion of the primary function φ(z, z):

φ(z, z) =
∑
n,m∈Z

z−n−hz−m−hφn,m

The states of the infinite past is defined as |φ〉 = limz,z→0 φ(z, z) |0〉. A state of the infinite
future is defined the same way. Now we impose a physical restriction to those states. They
should not be singular. This means that the In- and Outsates should be well defined at z = 0
and z →∞. This implies the following properties for the Laurent coefficients.

φn,m |0〉 = 0 for n > −h or m > −h
〈0|φn,m = 0 for n < h or m < h

6.6 The Central Charge

First of all, one needs to take a look at the Laurent expansion of the energy momentum tensor.

T (z) =
∑
n∈Z

Lnz
−n−2

The operators Ln can be calculated as:

Ln =

∮
dz

2πi
zn+1T (z) (8)
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These Laurent coefficients are generators of infinitesimal transformations as can be seen in
the following calculation.

Qn =

∮
dz

2πi
T (z)

(
−εnzn+1

)
= −ε

∑
n∈Z

∮
dz

2πi
Lmz

n−m−1 = −εnLn

These Laurent coefficients have the properties of the Virasoro algebra, which was discussed
in the previous report in more detail.

Definition 9 (Virasoro Algebra)

[Ln, Lm] = (m− n)Lm+n +
c

12
(m3 −m)δm,−n

The central charge c can be calculated by looking at the commutation relation of L2 and L−2.

〈0|L2L−2|0〉 = −4 〈0|L0|0〉+
c

2
=
c

2

Here the L0 term drops because of the definition of the in state ( 0 > −2). On the other hand
a simple calculation of the commutator and applying the knowledge of in and out states the
left term yields:

〈0|L2L−2 − L−2L2|0〉 = 〈0|L2L−2|0〉

The central charge can now be calculated in a rather lengthy calculation:

c

2
= 〈0|L2L−2|0〉 =

∮
dz

2πi

∮
dω

2πi

z3

ω
〈0|T (z)Tω|0〉

= (2πκ)2
∮

dz

2πi

∮
dω

2πi

z3

ω
〈0| : ∂zx(z)∂zx(z) :: ∂ωx(ω)∂ωx(ω) : |0〉

= (2πκ)2
∮

dz

2πi

∮
dω

2πi

z3

ω
2 〈∂x(z)∂x(ω)〉 〈∂x(z)∂x(ω)〉

=
1

2

∮
dz

2πi

∮
dω

2πi

z3

ω

1

(z − ω)4

=
1

2

∮
dz

2πi

z3

(z − 0)4
=

1

2

The first step in this calculation was to insert equation 8. Then inserting the definition of
the energy momentum tensor. Afterwards Wick’s theorem was applied. Here almost every
term is zero except for the double contractions. This is because any normal ordered product
applied to the vacuum state will give 0 and the two double contractions are the only terms
which did not have any normal ordered operators. Then the previously calculated two point
functions were inserted. The rest was just applying residue theorem several times.
All in all the result for the central charge is

c = 1
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7 The free fermion

The calculation for the free fermion goes along the same lines as the calculation of the free
boson. The difference lies in the action of the free fermion.

S =
κ

2

∫
dzdz

(
ψ∂ψ + ψ∂ψ

)
From variational principle follows that

∂ψ = ∂ψ = 0

Again the two point function can be calculated with the means of a Green’s function.

〈ψ(z, z)ψ(ω, ω)〉 =
1

2πκ

1

z − ω
(9)

This suggests that ψ is a conformal field of dimension 1
2 . This makes sense because if

one exchanges two particles one will get the same term with a minus sign, this is good since
fermions do have this property.
The energy momentum tensor can again be derived from its definition and the knowledge of
the Lagrange density.

T (z) = −π : ψ(z)∂ψ(z) :

7.1 Central charge for the free fermion

The discussion of in and out states can be applied here in exactly the same way than for the
free boson. Thus the actual calculation is just the last part:

c

2
= 〈0|L2L−2|0〉 =

1

(2πi)2

∮
dz

∮
dω
z3

ω
〈0|T (z)T (ω)|0〉

= (πκ)2
∮ ∮

dzdωz3

(2πi)2ω
(〈ψ(z)∂ψ(ω)〉 〈∂ψ(z)ψ(ω)〉+ 〈ψ(z)ψ(ω)〉 〈∂ψ(z)ψ(ω)〉)

=
1

4

1

(2πi)2

∮
dz

∮
dω
z3

ω

1

(z − ω)4
=

1

4

Again first the energy momentum tensor and the equation 8 was substituted into the equation.
Afterwards Wick’s theorem was applied and in the end residue theorem was applied. Thus
the central charge of the free boson is

c =
1

2
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