Boundary Conformal Field Theory

Zhuli HE ETH Zurich

Topics

- Part I: Boundary Conditions & Boundary States
 - 1.1 Conformal Invariance & Boundary Conditions
 - 1.2 Boundary States & Gluing Condition
 - 1.3 Partition function & Loop-channel Tree channel Equivalence
- Part II: Cardy condition
- Part III: g-function

1.1.1 Least Action Principle in Presence of Boundaries

Consider the 2D action for a free boson $X(\tau, \sigma)$

$$S = \frac{1}{4\pi} \int d\sigma \, d\tau ((\partial_{\sigma} X)^2 + (\partial_{\tau} X)^2)$$

where the boundary term will be taken into account.

2D surface with boundaries.

1.1.1 Least Action Principle in Presence of Boundaries

$$\begin{split} \delta_{X}S &= 0 \quad for \quad S = \frac{1}{4\pi} \int d\sigma \, d\tau ((\partial_{\sigma}X)^{2} + (\partial_{\tau}X)^{2}) \\ \delta_{X}S &= \frac{1}{\pi} \int d\sigma \, d\tau \left((\partial_{\sigma}X)(\partial_{\sigma}\delta X) + (\partial_{\tau}X)(\partial_{\tau}\delta X) \right) \\ &= \frac{1}{\pi} \int d\sigma \, d\tau \left(-\left(\partial_{\sigma}^{2} + \partial_{\tau}^{2}\right) X \cdot \delta X + \partial_{\tau} \left(\partial_{\tau}X \cdot \delta X\right) + \partial_{\sigma} \left(\partial_{\sigma}X \cdot \delta X\right) \right) \end{split}$$

The first term leads to KG-Eqn., and the two remaining term can be written as:

$$\begin{split} \delta_X S &= \frac{1}{\pi} \int d\sigma \, d\tau \left(\partial_\tau \left(\partial_\tau X \cdot \delta X \right) + \partial_\sigma \left(\partial_\sigma X \cdot \delta X \right) \right) \\ &= \frac{1}{\pi} \int d\sigma \, d\tau \, \vec{\nabla} \cdot \left(\vec{\nabla} X \delta X \right) \\ &= \frac{1}{\pi} \int_B dl_B \left(\vec{\nabla} X \cdot \vec{n} \right) \delta X = 0 \end{split} \qquad \qquad \qquad \qquad \qquad 0 = \frac{1}{\pi} \int d\tau (\partial_\sigma X) \, \delta X \Big|_{\sigma=0}^{\sigma=\pi} \end{split}$$

1.1.1 Least Action Principle in Presence of Boundaries

$$0 = \frac{1}{\pi} \int d\tau (\partial_{\sigma} X) \delta X \Big|_{\sigma=0}^{\sigma=\pi}$$

This equation allows two different solutions, Hence two different boundary conditions:

$$\partial_{\sigma}X\big|_{\sigma=0,\pi}=0$$
 Neumann condition
$$\delta X\big|_{\sigma=0,\pi}=0=\partial_{\tau}X\big|_{\sigma=0,\pi}=0$$
 Dirichlet condition

1.1.2 Boundary conditions for the Laurent modes

Consider this mapping:

Then express the boundary conditions in terms of the Laurent modes.

Recall
$$j(z) = i\partial X(z,\overline{z})$$
 we find $\partial_{\sigma}X\Big| = i(\partial - \overline{\partial})X = j(z) - \overline{j}(\overline{z}) = \sum_{n \in \mathbb{Z}} (j_n z^{-n-1} - \overline{j}_n \overline{z}^{-n-1})$

$$i \cdot \partial_{\tau}X\Big| = i(\partial + \overline{\partial})X = j(z) + \overline{j}(\overline{z}) = \sum_{n \in \mathbb{Z}} (j_n z^{-n-1} + \overline{j}_n \overline{z}^{-n-1})$$

Apply to the boundary condition:

$$j_n-\overline{j}_n=0$$
 Neumann condition
$$j_n+\overline{j}_n=0 \quad (\pi_0=0)$$
 Dirichlet condition

Conformal Invariance & Boundary conditions

Boundary States & Gluing Condition

Partition Function & Loop-channel – Tree channel Equivalence

1.1.3 Conformal Symmetry

- Laurent modes of two currents $j(z), \quad \overline{j}(\overline{z})$ we have $\begin{aligned} j_n \overline{j}_n &= 0 & N.C \\ j_n + \overline{j}_n &= 0 & D.C \end{aligned}$
- Now, also consider the Conformal Symmetry generated by EM-tensor,

$$T(z) = \frac{1}{2}N(jj)(z), \quad \overline{T}(\overline{z}) = \frac{1}{2}N(\overline{jj})(\overline{z})$$
 where the Laurent modes for EM-tensor $L_n = \frac{1}{2}N(jj)$

• For both Neumann and Dirichlet boundary conditions, we have

$$\boxed{L_n - \overline{L}_n = 0} \qquad T(z) = \overline{T}(\overline{z})$$

It means the central charge in holomorphic and anti-holomorphic theories have to be equal.

1.2.1 A Glimpse of Partition Function

- One loop partition function for CFTs defined on a **torus**
- For BCFT the topology of a cylinder instead of a torus is yielded
- One-loop partition function in BCFT is equivalent to tree-level amplitude in CFT: Loop-channel – Tree-channel Equivalence

Notation: $Z_{loop} \rightarrow Z$ $Z_{tree} \rightarrow \tilde{Z}$

1.2.2 Boundary States

- Focus on Closed sector (Tree-Channel)
- Action formalism is not as general as Hilbert space formalism.
- Consider a Hilbert space of some theory. In the presence of a boundary, there are some particular states satisfying the boundary conditions, we call them **Boundary States**

$$\partial_{\tau} X_{closed} \big|_{\tau=0} \big| B_N \big> = 0$$
 Neumann condition $\partial_{\sigma} X_{closed} \big|_{\tau=0} \big| B_D \big> = 0$ Dirichlet condition

1.2.3 Boundary States and the Laurent Modes

Boundary Conditions into the picture of Boundary States:

$$\partial_{\tau} X_{closed} \big|_{\tau=0} \big| B_N \big\rangle = 0 \qquad \text{Neumann condition}$$

$$\partial_{\sigma} X_{closed} \big|_{\tau=0} \big| B_D \big\rangle = 0 \qquad \text{Dirichlet condition}$$

We can also express them in terms of the Laurent modes:

$$i \cdot \partial_{\tau} X_{closed} \Big|_{\tau=0} = \sum_{n \in \mathbb{Z}} (j_n e^{-in\sigma} + \overline{j}_n e^{+in\sigma})$$
$$\partial_{\sigma} X_{closed} \Big|_{\tau=0} = \sum_{n \in \mathbb{Z}} (j_n e^{-in\sigma} - \overline{j}_n e^{+in\sigma})$$

$$\begin{vmatrix} j_n + \overline{j}_{-n} | B_N \rangle = 0, \quad (\pi_0 | B_N \rangle = 0) \quad N.C.$$
$$|j_n - \overline{j}_{-n} | B_D \rangle = 0 \qquad D.C.$$

$$|j_n - \overline{j}_{-n}|B_D\rangle = 0$$
 D.C

Gluing Conditions.

1.2.4 Solutions to gluing conditions

The solution for the gluing conditions for the example of free boson

$$|B_{N}\rangle = \frac{1}{N_{N}} \exp(-\sum_{k=1}^{\infty} \frac{1}{k} j_{-k} \overline{j}_{-k})|0\rangle \qquad N.C.$$

$$|B_{D}\rangle = \frac{1}{N_{D}} \exp(+\sum_{k=1}^{\infty} \frac{1}{k} j_{-k} \overline{j}_{-k})|0\rangle \qquad D.C.$$

It has the following structure

After some calculation on the blackboard.....

$$|B\rangle = \frac{1}{N} \sum_{\vec{m}} |\vec{m}\rangle \otimes |U\vec{\vec{m}}\rangle$$

1.3.1 Loop-Channel Partition Function (Open Sector)

 the loop partition function for free boson on cylinder is given by

$$Z^{C}(t) = Tr_{H_{B}}(q^{L_{0}-c/24})$$

For example, the Neumann-Neumann boundary condition

$$Z_{bos.}^{C(N,N)}(t) = \frac{1}{2\sqrt{t}} \frac{1}{\eta(it)}$$

1.3.2 Tree-Channel Partition Function (Closed Sector)

• The tree-level amplitude is given by the overlap:

$$\tilde{Z}^{C}(l) = \left\langle \Theta B \middle| e^{-2\pi l(L_{0} + \overline{L}_{0} - \frac{C + \overline{C}}{24})} \middle| B \right\rangle$$

 Finally, the partition function for the closed sector is calculated to be (for the example of Neumann-Neumann boundary condition)

$$\tilde{Z}_{bos.}^{C(N,N)}(l) = \frac{1}{N_N^2} \frac{1}{\eta(2il)}$$

Conformal Invariance & Boundary conditions
Boundary States & Gluing Condition
Partition Function & Loop-channel – Tree-channel equivalence

1.3.3 Loop-Channel – Tree-Channel Equivalence

the open and closed sector are related by

$$(\sigma,\tau)_{open} \Leftrightarrow (\tau,\sigma)_{closed}$$

Same cylinder:

$$t = \frac{1}{2l}$$

$$|B\rangle = \frac{1}{N} \sum_{\vec{m}} |\vec{m}\rangle \otimes |U\vec{\vec{m}}\rangle$$

Fix the normalization constants.

$$Z_{bos.}^{C(N,N)}(t) = \frac{1}{2\sqrt{t}} \frac{1}{\eta(it)}$$

$$\sqrt{\frac{l}{2}} \frac{1}{\eta(-\frac{1}{2il})} \frac{1}{2\eta(2il)} = \frac{N_N^2}{2} \tilde{Z}_{bos.}^{C(N,N)}(l)$$

$$N_N = \sqrt{2}$$

Similarly,
$$N_D = 1$$

2.1 Boundary states for Rational CFT

 As for the free boson model, a boundary state in RCFT is required to satisfy the following gluing conditions:

$$\left| \left(L_n - \overline{L}_{-n} \right) \right| B \rangle = 0$$
 Conformal symmetry

- Ishibashi States: $\left|\beta_{i}\right\rangle \rangle = \sum_{\vec{m}}\left|\phi_{i},\vec{m}\right\rangle \otimes U\left|\overline{\phi}_{i},\overline{\vec{m}}\right\rangle$ satisfy the gluing condition
- Question: Are Ishibashi states really our boundary state?

2.1 Boundary states for Rational CFT

Consider the following overlap of the Ishibashi states:

$$\langle \langle \beta_{j} | \exp \left[-2\pi l \left(L_{0} + \overline{L}_{0} - (c + \overline{c}) / 24 \right) \right] | \beta_{i} \rangle \rangle$$

$$= \delta_{ij^{+}} \langle \langle \beta_{i} | \exp \left[-2\pi i (2il) \left(L_{0} - c / 24 \right) \right] | \beta_{i} \rangle \rangle$$

$$= \delta_{ij^{+}} Tr_{H_{i}} (q^{L_{0} - c/24}) = \delta_{ij^{+}} \chi_{i} (2il)$$

- S-transform of $\chi(2il)$ does not give non-negative integer coefficients as required by Verline formula: $Z_{\alpha\beta}(t) = \sum_{i} n_{\alpha\beta}^{j} \chi_{j}(it)$
- A true boundary States $\left|B_{\alpha}\right\rangle = \sum_{i} B_{\alpha}^{i} \left|\beta_{i}\right\rangle$
- The complex coefficient are constrained by the Cardy Condition.

2.2 Cardy condition

Now, the cylinder amplitude between two boundary states can be expressed as

$$\begin{split} \tilde{Z}_{\alpha\beta}(l) &= \left\langle \Theta B_{\alpha} \left| \exp \left[-2\pi l \left(L_{0} + \overline{L}_{0} - (c + \overline{c}) / 24 \right) \right] \right| B_{\beta} \right\rangle \\ &= \sum_{i,j} B_{\alpha}^{j} B_{\beta}^{i} \left\langle \left\langle \beta_{j^{+}} \left| \exp \left[-2\pi l \left(L_{0} + \overline{L}_{0} - (c + \overline{c}) / 24 \right) \right] \right| \beta_{i} \right\rangle \right\rangle \\ &= \sum_{i} B_{\alpha}^{i} B_{\beta}^{i} \chi_{i}(2il) \end{split}$$

2.2 Cardy condition

 Loop-channel – Tree-channel Equivalence closed sector cylinder diagram is transformed to the following in the open sector:

$$\tilde{Z}_{\alpha\beta}(l) \xrightarrow{l \to 1/2t} \Rightarrow = \tilde{Z}_{\alpha\beta}(\frac{1}{2t}) = \sum_{i,j} B_{\alpha}^{i} B_{\beta}^{i} S_{ij} \chi_{j}(it) = ? Z_{\alpha\beta}(t)$$

$$Z_{\alpha\beta}(t) = \sum_{i} n_{\alpha\beta}^{i} \chi_{j}(it)$$

Cardy Condition ensures Loop-channel – Tree-channel Equivalence

$$\tilde{Z}_{\alpha\beta}(l) \xrightarrow{l \to 1/2t} Z_{\alpha\beta}(t)$$

$$n_{\alpha\beta}^{j} = \sum_{j} B_{\alpha}^{i} B_{\beta}^{i} S_{ij} \in Z_{0}^{+}$$

That is, for all pairs of the boundary states in a RCFT, such combinations have to be non-negative integers.

3.1 Ground-State Degeneracy

Consider log Z, the effect of boundary leads to one other term log g, i.e.

$$\log Z_{\alpha\beta} \to \log Z_{\alpha\beta} + \log g$$
 $Z_{\alpha\beta} \to g \cdot Z_{\alpha\beta}$

g is then called Ground State Degeneracy

Example of free boson:
$$Z(t) = \frac{1}{\eta(it)}$$

$$Z(t) = \frac{1}{\eta(it)}$$

$$Z(t) = \frac{1}{\eta(it)}$$

$$Z(t) = \frac{1}{2\sqrt{t}}$$

$$Z(t) = \frac{1}{2\sqrt{t}}$$

• g is **universal**: does not depend on length or mass or any energy scale, only depends on boundary.

3.1 Ground-State Degeneracy

Once again, consider the cylinder partition function with Verlinde formula:

$$Z_{\alpha\beta}^{0} = Tr(e^{\frac{\pi}{l}(L_{0}-c/24)}) = \sum_{i} n_{\alpha\beta}^{i} \chi_{i}$$

The infinite limit of I could be expressed as modular transformation for the character:

$$\chi_i = \sum_j S_{ij} \chi_j$$

• at infinite limit of *I*, only ground state contributes to the expression, $\sum_{j} S_{ij} \chi_{j}$

thus
$$Z_{\alpha\beta} \to Tr(e^{\frac{\pi}{l}(L_0 - c/24)}) \sum_i n_{\alpha\beta}^i S_{i0} \to g \cdot Z_{\alpha\beta}^0$$
 with $g = g_{\alpha}g_{\beta} = \sum_i n_{\alpha\beta}^i S_{i0}$

• Interpretation: the consistency of this formula with $g_{\alpha} = \langle 0 | \alpha \rangle$ puts certain constrain on the possible boundary states and the coefficients n. This constraint is *Cardy Condition*.

Topics

- Part I: Boundary Conditions & Boundary States
 - 1.1 Conformal Invariance & Boundary Conditions
 - 1.2 Boundary States & Gluing Condition
 - 1.3 Partition function & Loop-channel Tree channel Equivalence
- Part II: Cardy condition
- Part III: g-function

Boundary Conditions & Boundary States Cardy Condition
G-function

Thank you for your attention.