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Abstract

The introductory point consisting of a description of ’t Hooft’s large N limit
and its relation with string theory, a quick jump is then made towards the
exposition of Maldacena’s argument of the AdS5/CFT4 duality. The holo-
graphic principle is introduced and analysed in the context of the correspon-
dence. Finally, correlation functions, in the context of the AdSd+1/CFTd,
are studied for scalar fields and the simple examples are computed in detail.
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1 Introduction

This document reports the presentation given on the 27th of May at ETH Zürich
in the frame of the Proseminar in Theoretical Physics: Conformal Field Theory
and String Theory, coordinated by the Prof. Matthias Gaberdiel.
The objective of this talk as intended by its author was to present the basic
features of the AdS5/CFT4 correspondence, namely:

• a brief description of the first ideas that lead to conjecture a gauge/string
duality (the ’t Hooft limit, following [1],[9])

• the emergence of the conjecture from the D3-brane dual low energy descrip-
tion in terms of a maximally supersymmetric gauge theory on the world-
volume and its backreaction on the geometry (following mainly [1])

• Anti-de-Sitter space and its features (following [1],[9],[2])

• a brief account for the precise statement of the strong form of the duality
and its formulation (following [2],[1])

• the realisation of the duality as a boundary-bulk relation and how hologra-
phy may be incorporated (following [2])

• a brief description of the holographic ideas and their realisation in AdS/CFT
(following [6],[4],[1])

• AdS/CFT correlation functions for scalar fields (following [2],[9]).

The conjecture of the AdS/CFT correspondence was first made by Juan Mal-
dacena in 1997, and since then it has been subject of intense research. One of the
main concerns of today ’s research on the subject is integrability, which will be
briefly accounted for towards the end of this report.

Firstly, a brief exposition of ’t Hooft’s ideas on gauge/string duality will be
presented as a hint to what may such a duality look like, and how it may be
formulated. This is done via an expansion in terms of Feynman diagrams on the
large N limit of a U(N) gauge theory, mainly following [9].
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In this document the argument presented in [1] is followed intending to con-
jecture the duality between Type IIB String Theory in AdS5×S5 and N = 4
U(N) gauge theory in M1,3 Minkowski space. In this argument, the low energy
description of D3-branes as classical p-dimensional supergravity solutions (black
p-branes) in 10-dimensional type IIB string theory and their dual description as
a N = 4 Super-Yang Mills gauge theory in the 4-dimensional world-volume with
a 10-dimensional type IIB string theory in the bulk, play a fundamental role1.
Indeed, it is the analysis of a stack of N D3-branes in a low energy limit in both
descriptions that allows the conjecture to relate a gravity-including string theory
in a non-trivial background created by the stack and the gauge theory living in
the stack world-volume itself.

Among these considerations, a brief presentation of the 5-dimensional Anti-de
Sitter space (AdS5) will be given. This will be done by considering the usual
description of AdS5 as a hypersurface in M2,4 6-dimensional Minkowski space. A
brief account for different patches will be given, emphasising the Poincaré patch,
which is the one naturally arising when considering the near-horizon limit of the
D3-branes geometry.

Supported by this, the strong form of the conjecture is made and a brief
account of its consequences and first matches is done. In particular, the symmetry
groups of both theories are compared (the bosonic subgroup only), and certain
tractable regimes are briefly studied. Also, the correspondence is seen to be
realised in terms of a boundary-bulk formulation where the bulk string fields
couple as sources of boundary CFT local operators (as given in [2]), allowing for
an explicit computation of correlation functions. This will be done in the final
chapter of this report for the case of a massless scalar field, following [2], and
the result for the massive case will be presented. Then, the general perturbative
method to compute n-point correlation functions is exposed, as given in [9], and
bulk-to-bulk propagators are introduced. With this the exposition of the subject
ends, as well as the report.

Before the final chapter, a small detour on the holographic principle and its
basic arguments is done; then, this principle is seen to be realised explicitly in
the context of the AdS5/CFT4 correspondence, as in [1] and [2], with the usual
regularised-boundary techniques.

I would like to thank Cristian Vergu for all his help as a supervisor of this work
and good hints for the presentation, as well as Prof. Gaberdiel for the opportunity
of working on this subject.

1This duality of descriptions was first conjectured in Polchinski, Dirichlet-Branes and
Ramond-Ramond Charges, hep-th/9510017v3.
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Figure 1: The AdS5/CFT4 correspondence. The duality allows in principle to
solve theories in hard regimes using the dual theory in a soft regime. The link
between the different regimes between the theories is made by the use of the
relation on the bottom of the figure, issued from the black p-brane calculations.
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2 Large N Gauge Theories as String Theories

In this section, we follow [9] on the analysis first made by ’t Hooft of large N
gauge theories with gauge group U(N). This analysis proceeds by considering a
perturbative 1/N expansion in terms of Feynman diagrams with a slight change in
notation with respect to the usual Yang-Mills notation. It will be seen explicitly
that for vacuum bubbles made up of adjoint fields this leads to an expansion
in topological triangulations where topologies are suppressed by N−2g factors,
where g is the genus. The main contributions are therefore given by sphere-
triangulations, i.e. planar graphs. This corresponds to the usual closed interacting
strings gs expansion in terms of worldsheet topologies.

2.1 Double Line Notation and ’t Hooft Limit

Consider a U(N) Yang-Mills gauge theory with gauge fields Aaµ in the adjoint
representation, coupling constant gYM and some general Lmatter part of the La-
grangian composed of matter fields. Write the Lagrangian density in the usual
form as

L =
1

g2YM
(Tr(FµνF

µν) + Lmatter) , (1)

where the field strength is given by Fµν = ∂µAν − ∂νAµ + igYM [Aµ, Aν ].

Define the ’t Hooft parameter to be λ ≡ g2YMN . The ’t Hooft limit is defined
as letting N →∞ while keeping λ fixed. It is possible to see that the Lagrangian
density goes as L ∼ N/λ, and this will be used later.

As known, the U(N) group adjoint representation can be written as a direct
product between the fundamental and the anti-fundamental representations. Use
this fact by labelling gauge fields with two indices, Aij, each corresponding to each
representation, i, j = 1, ..., N . In diagram notation, a gauge field is then writ-
ten as two lines with opposite orientation, corresponding to the fundamental and
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anti-fundamental representations indices2, as in the figure above.

In this way, the Feynman graphs used when performing perturbative expan-
sions on this theory will be networks of double lines, if only the gauge fields are
considered, by the form of the gauge fields propagator:

〈AijAkl 〉 ∝ δilδ
k
j .

The figure below is the diagram corresponding to the gauge field self-energy, in
the usual and new notations.

Figure 2: Gluon field self-energy, as in [9].

This diagram is of order O(g2YMN), as each propagator contributes with a
factor g2YM , each 3-gluon vertex with g−1YM and the loop index runs between N
possible values. In the ’t Hooft limit, this diagram receives therefore no divergent
contributions.

2.2 Perturbative Expansion and Link with Strings

Keeping in mind the form of the Lagrangian as

L =
N

λ
(Tr(FµνF

µν) + Lmatter) ,

it is easy to derive a set of Feynman rules that allows to write the contributions
given by connected vacuum diagrams of gauge fields.

By the considerations given before, these graphs can be seen as correspond-
ing to compact, closed, oriented surfaces. One useful way of understanding this
fact is by considering the double line diagrams as topological simplicial triangula-
tions. In the figure below this is explained for two different vacuum bubble graphs.

2Each line is made to correspond to an index, and not to a field as usual in quantum field
theories
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Figure 3: Some graphs in the double line notation, as in [9].

The Feynman rules read:

• N/λ for each vertex (V)

• λ/N for each propagator (E, edge)

• N for each loop (F, face)

where edge is used to denote propagators as it corresponds to the object connecting
two vertices, and face is used to denote loops as it corresponds to a succession
of propagators/edges that close on themselves with no propagators/edges inside.
Therefore each graph contributes with

NV+F−EλE−V = NχλE−V , (2)

where χ is Euler’s characteristic of the 2-dimensional surface represented by the
graph. For closed oriented surfaces we can write χ = 2 − 2g, with g the surface
genus. The sum over all Feynman graphs therefore takes the form

∑
g fixed

∞∑
g=0

N2−2gfg(λ) =
∑

g fixed

∞∑
g=0

(
1

N

)2g

N2fg(λ),

and the ’t Hooft limit corresponds to a perturbative expansion in even negative
powers of N . This means that higher genus surfaces are suppressed by factors of
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N−2g and therefore the leading contributions come from planar graphs that have
the topology of a sphere g = 0. Remark that no assumption is made about how
to sum over all graphs of a given genus, but the conclusion remains.

This corresponds remarkably to the closed string perturbative gs expansion in
worldsheet topologies, with the identification gs ∼ 1/N . This expansion arises in
string theory when considering closed oriented strings interactions by summing
not only over possible worldsheet metrics but also possible topologies. We have
then

Sstring = SPolyakov + φχ, χ =
1

4π

∫
d2σ
√
gR,

and by Gauss-Bonnet theorem χ is just Euler’s characteristic, a topologically
invariant number for 2-dimensional surfaces. When summing over possible world-
sheet topologies, gs ≡ eφ plays the role of a coupling constant and the sum may
be seen as a perturbative expansion.

Figure 4: String interactions and topological expansion.

To compute connected n-point correlation functions for some operators Oj

consider the transformed action3 S → S + N
∑

j JjOj, for any arbitrary sources
Jj, and write in the ’t Hooft limit

〈
n∏
j=1

Oj〉 = (iN)−n

 δnW
n∏
j=1

δJj


Jj=0

∝ N2−n, (3)

where W is the generating functional of connected graphs. It is remarkable to see
that 2-point functions come out canonically normalised and 3-point functions are
proportional to 1/N , so that indeed in this limit 1/N is the coupling constant.
One can easily be convinced that the addition of matter fields in the fundamen-
tal representation of U(N) corresponds to the effect of open strings. Indeed, as

3For consistency the additional term is made to scale in the same way as the first original
term in the ’t Hooft limit.
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fundamental fields carry only one index, in our notation they would correspond
to the presence of boundaries in the surfaces representing the Feynman diagram
expansion. Then again the expansion would be made in terms of the Euler’s char-
acteristic χ = 2− 2g − b, where b is the number of independent boundaries, and
it would correspond to a gs string theory expansion, for both open and closed
strings. Remark that now, contrary to the previous case, the expansion contains
terms in odd powers of 1/N .

It is finallly important to take away from this section that it is possible to ob-
tain a similar treatment as the one obtained in standard string theory by analysing
a special limit in a gauge theory. It has not been treated, and this method does not
provide it, any way of explicitly deriving such possible correspondence between
the two theories, this is rather the purpose of the AdS/CFT.
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3 D3-Branes: Gauge Theories and

Classical Super-Gravity Solutions

This section introduces a paradigm that is central to the AdS/CFT correspon-
dence. This paradigm is a dual description of a stack of N D3-Branes, which will
then lead to the gauge/gravity duality of the correspondence.

In a first part a description of the gauge theory living in the world-volume is
made, with an emphasis on its symmetries. Indeed, in a low energy limit when
N parallel D-branes are made to coincide, the usual U(1) gauge theory living on
each brane enhances the system’s gauge symmetry from U(1)N to U(N). In this
process enter the Chan-Paton factors, which label the brane on which each end of
the strings live, and that in the end become the indices of the final gauge group.
The gauge theory surviving in the D3-branes world-volume inherites the space-
time supersymmetry of type IIB string theory, but not fully as D-branes break
half the supersymmetries. Therefore, this gauge theory contains 16 conserved su-
percharges; being a 4-dimensional theory, it is constrained to have supersymmetry
rank N = 4. The Lagrangian of this theory is completely settled by these consid-
erations and the final unique theory is called N = 4 Super-Yang Mills theory.

In a second part of the section, same system of N D3-branes is again described
but using a different analysis. Given the natural emergence of gravity from string
theory, and D-branes being charged massive objects in this theory, the question
naturally arises of knowing what is the geometric meaning of a stack of D-branes.
In particular, using the low energy limit of superstring theory, namely super-
gravity, it is possible to replace the D-branes influence on the theory by a non-
trivial geometry4 and let strings react to this non-trivial background. This is much
in the same way as a very familiar dicotomy in physics, which can be grasped by
considering the example of an electron-proton scattering process. Indeed, there
are two different ways of describing this process, at least in a low energy limit.
The first one is by considering and summing over all possible Feynman diagrams
that contribute to the process, find an expression for the S-matrix using the usual
QED methods and obtaining a scattering amplitude. The second is to consider
that the proton creates a static electric field in its surroundings and that the
electron reacts to this non-trivial space by scattering through it5, i.e. by being
free in a deformed background and interacting with it. This is indeed the perfect
analogy of what will be done when describing the N D3-branes by its geometry
backreaction.

4In opposition to the usual flat 10-dimensional background considered in superstring theory
5Taking the simplistic and helpful consideration that the proton does not move.
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3.1 N = 4 Super-Yang Mills U(N) Theory

As discussed, the theory living on the world-volume of a stack of D3-branes in a
low energy limit is a supersymmetric non-abelian gauge theory N = 4 with gauge
group U(N).
This theory contains the following fields:

• λaα, α = 1, 2, a = 1, ..., 4 left Weyl fermionic fields

• X i, i = 1, ..., 6 real scalar fields - SO(6) ∼ SU(4)

• Fµν = ∂µAν − ∂νAµ + i [Aµ, Aν ], Aµ gauge fields with field strength Fµν

• Dµλ = ∂λ+ i [Aµ, λ], a covariant derivative.

The 6 real scalar fields X i transform between themselves by a SO(6) rotation,
which appears from the breaking of Lorentz symmetry by the D3-branes, namely
SO(1, 9) −→ SO(1, 3)×SO(6), the first part being related to the fields tangent to
the D3-branes that live in a theory with Lorentz symmetry in the world-volume,
and the second part representing the transversal dynamics, the fields X i labelling
these type of excitations of the branes.

The Lagrangian is completely settled by supersymmetry:

L = Tr

(
− 1

2g2
FµνF

µν +
θI

8π2
FµνF̃

µν −
∑
a

iλ̄aσ̄µDµλa

−
∑
i

DµX
iDµXi +

∑
a,b,i

gCab
i λa

[
X i, λb

]
+
∑
a,b,i

gC̄iabλ̄
a
[
X i, λ̄b

]
+
g2

2

∑
i,j

[
X i, Xj

]2)
,

where F̃ µν = εµνρσF
ρσ is the dual field strength and θI is the instanton angle. The

constants Cab
i are Clebsch-Gordon coefficients relating fields of different spins and

the Yang Mills coupling g is related to the string coupling by g2 ∼ gs.

The details of this theory, including the consequences of such Lagrangian den-
sity, are not of fundamental importance in the context of this report, except for
the few following points. Firstly, it can be seen by dimensional analysis that
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Figure 5: The brane modes composing N = 4 SYM and low energy limit describ-
ing the bulk modes, 10d supergravity.

this theory is renormalisable. But this isn’t all, it can be shown that the theory
has a vanishing β-function. This means that this theory is actually a Conformal
Field Theory, or CFT. Also, it preserves all its symmetries at the quantum level,
namely:

• R-symmetry SO(6) ∼ SU(4), with 15 traceless hermitian generators T ab, a, b =
1, ..., 4

• conformal symmetry in 4d SO(2, 4) with generators Pµ, Lµν , D,Kµ

• N = 4 Poincaré Supersymmetry

These symmetries compose the superconformal group SU(2, 2|4) of this gauge
theory, and the superalgebra may be represented by a diagonal bosonic part and
an off-diagonal fermionic part: Pµ, Kµ, Lµν , D Qa

α, S̄
a
α̇

Q̄α̇a, Sαa T ab


where Qa

α, Q̄α̇a are the usual supersymmetry generators and Sαa, S̄
a
α̇ are the gen-

erators given by the commutation relations of Qa
α, Q̄α̇a with the special conformal

transformations Kµ, and that therefore close the algebra.

3.2 Classical Super-Gravity Solutions

Historically this subject didn’t develop as presented in this report. In fact, the
conjecture of the D-branes existence was proposed in parallel of the discovery of
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the black p-brane solution of supergravity that is exposed here. It was only in
1995 that J. Polchinski conjectured the duality of the description, i.e. that in
fact this solution corresponds to D-branes6. The exposition made in this report
is based in a full aknowledgement of this conjecture.

3.2.1 Black p-Branes

As known, Dp-branes are massive charged objects. Consider the classical super-
gravity action

S =
1

(2π)7α′4

∫
d10x
√
−g
(
e−2φ(R + 4(∇φ)2)− 2

(8− p)!
F 2
p+2

)
, (4)

where Fp+2 = dAp+1 is the field strength associated to a Ap+1 potential obtained
in superstring theory. In the case of interest here, type IIB string theory, there are
a 2-rank tensor and a 4-rank tensor resulting from the theory, i.e. p = 1, 3. The
case which corresponds to D3-branes, p = 3, which will be detailed in this report,
corresponds to the 4-rank tensor in the Ramond-Ramond sector of superstring
theory, with self-dual field strength F5 = ∗F5

7.

Look for a p-dimensional solution carrying N charges8 with respect to this
potential9

N =

∫
S8−p
∗Fp+2,

and require some desirable symmetries: euclidean symmetry ISO(p) in p dimen-
sions along the Dp-branes, and spherical symmetry SO(9-p) in the (9-p) transver-
sal directions.

This reduces the problem to the finding of a spherically symmetric charged
black hole static solution in (10-p) dimensions. In general relativity this corre-
sponds to the Reissner-Nördstrom solution of a static, charged black-hole. In this
case, the situation is more complex but the solution has some similarities:

ds2 = − f+(ρ)√
f−(ρ)

dt2 +
√
f−(ρ)

p∑
i=1

dxidxi +
f−(ρ)−

1
2
− 5−p

7−p

f+(ρ)
dρ2 +ρ2f−(ρ)

1
2
− 5−p

7−pdΩ2
8−p,

(5)

6In Dirichlet-Branes and Ramond-Ramond Charges, November 1995, arXiv-hep-
th/9510017v3

7This condition has actually to be added to the action (4), as it is not implied by it.
8Each Dp-brane carries one unit of charge.
9The dimension of the world-volume of the object and the rank of the potential coincide, as

required by a minimal coupling.
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where

f± = 1−
(
r±
ρ

)7−p

,

and the parameters r± are related to the mass and charge of the N Dp-branes by

M =
1

(7− p)(2π)7dpl8P

(
(8− p)r7−p+ )− r7−p−

)
, (6)

N =
1

dpgsl
7−p
s

(r+r−)
7−p
2 . (7)

Here ρ is the radial direction in the (9-p) spherically symmetric submanifold,
and the xi parametrise the Dp-branes. The symbol lP is Planck’s constant in 10
dimensions and dp is the area of the unit (p-1)-sphere.

It is possible to see that there is a horizon at ρ = r+. Indeed, use the metric
to compute

g

(
∂

∂t
,
∂

∂t

)
= − f+(ρ)√

f−(ρ)
= 0 at ρ = r+.

Also, for p ≤ 6, there is a curvature singularity at ρ = r−. It is possible to
see it by computing some frame-invariant quantity, as the Kretschmann scalar
K = RµνρσR

µνρσ, and see its divergence when ρ = r−. This is done in the same
way, and yielding a similar result, as in simpler Schwarzschild solution.

By the cosmic censorship hypothesis, which states that no naked singularities
should exist10, it is imperative to have r+ ≥ r−. This implies a lower bound to
the mass, using (7) and (6),

M ≥ N

(2π)7gsl
p+1
s

.

where it has been used l4P = gsl
4
s . For supersymmetry reasons11 we retain the

solution with r+ = r− ≡ R , called the extremal solution, where the horizon and
the curvature singularity are made to coincide. All care is necessary to treat this
case as the supergravity description becomes inadequate at a certain distance of
the singularity, as the curvature becomes too high. For the case p=3, which will
be the case in interest, the situation is nevertheless more gentle as the ρ = r+
surface is regular and it is possible to find a smooth analytic extension of the
solution. Writing everything in this extremal case, the solution (5) becomes

10This is usually linked to the requirement of having a well-posed Cauchy problem.
11The found inequality is related to the BPS bound with respect to the 10 dimensional space-

time supersymmetry.
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ds2 =
√
f+(ρ)

(
−dt2 +

p∑
i=1

dxidxi

)
+ f+(ρ)

3
2
− 5−p

7−pdρ2 + ρ2f+(ρ)
1
2
− 5−p

7−pdΩ2
8−p, (8)

where now

f+(ρ) = 1−
(
R

ρ

)7−p

.

The symmetry ISO(p) is enhanced to the Poincaré symmetry ISO(1,p), which
is rather pertinent as theories in Dp-branes should carry this kind of spacetime
symmetry in the limits which are of interest to us. Using equation (7) in the
extremal case, it is possible to get an expression for R:

R7−p = dpgsl
7−p
s . (9)

Define a new coordinate r7−p = ρ7−p−R7−p; notice that the horizon is now at
r = 0. Also, define H(r) = [f+(ρ(r))]−1:

H(r) =
1

1−
(
R
ρ

)7−p =
1

1− R7−p

r7−p+R7−p

=
r7−p +R7−p

r7−p
= 1 +

(
R

r

)7−p

.

Focus on the p=3 case, corresponding to D3-branes. Then using

d(ρ4) = d(r4) =⇒ dρ2 =

(
r3

ρ3

)2

dr2 =
r6dr2

(r4 +R4)3/2

=⇒ dρ2 =
1

(1 + R4

r4
)3/2

dr2 = H(r)−3/2dr2,

and also ρ2 = (r4 +R4)1/2 = r2H(r)1/2, the solution (8) reads

ds2 =
1√
H(r)

ηµνdx
µdxν +H(r)2H(r)−3/2dr2 + r2H(r)1/2dΩ2

5

=⇒ ds2 =
1√
H(r)

ηµνdx
µdxν +

√
H(r)(dr2 + r2dΩ2

5). (10)

Before continuing, it is useful to remark that this supergravity description is
adequate in a low curvature limit, i.e. when R� ls. Using the relation

R4 = 4πNgsl
4
s , (11)
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obtained from (9) by using d3 = 4π, it is easy to conclude that this description is
valid when

1� gsN � N, (12)

where the last relation arises from the fact that we are always implicitly consider-
ing gs to be small and a perturbative expansion on gs to be meaningful. Therefore
by this relation this is also a large N limit of the system12.

It is interesting, as well as fundamental, to remark that this decription is dual
to the one obtained in the previous section via a gauge theory in the world-volume
of the D3-branes. Indeed, a perturbative treatment of this gauge theory is compre-
hensible and meaningful when the effective parameter is small enough, i.e. when
gsN � 1. This is perfectly incompatible, and thus dual, with the regime found in
(12). This is a central statement to the gauge/gravity duality.

3.2.2 Near Horizon Limit and Redshift

In the next chapter the near horizon limit of this geometry will be needed. As
already mentioned, the horizon is at r = 0, so that a meaningful limit to take
near the horizon is r/R� 1. In this limit,

√
H(r) =

√
1 +

R4

r4
=
R2

r2

√
r4

R4
+ 1 ' R2

r2
,

and therefore the solution represents a geometry which in this limit is

ds2 =
r2

R2
ηµνdx

µdxν +
R2

r2
dr2 +R2dΩ2

5. (13)

This is the metric of the product space of 5-dimensional Anti-de Sitter space
with a 5-dimensional sphere, AdS5×S5, both with radius R. The 5-sphere is trivial
to see in this solution, as it constitutes the third term. For those unfamiliar with
Anti-de Sitter space, the next subsection should be useful to clarify this aspect.

Another important aspect of this geometry is the redshift it produces. Consider
two observers (r, t) and (r′, t′), describing some line element such that

ds2 = ds′2 =⇒ −dt2√
H(r)

=
−dt′2√
H(r′)

12It is evident that it is easier to treat the system when the number N of D-branes, and thus
the total charge and mass, are large, since in this way it is easier to clear-cut it from quantum
influences.
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=⇒ dt′

(H(r′))1/4
=

dt

(H(r))1/4
.

Send one of the radial coordinates to infinity, so that H(r) ' 1, and remark that

there will be an associated redshift [H(r)]−1/4. Since the redshift goes to zero
when r −→ 0, i.e. near the horizon, an observer at infinity see states in this
region as having a very low energy no matter the energy the state has in the
string frame. This will be important to keep in mind in the next section.

3.3 5-dimensional Anti-de Sitter Space

Anti-de Sitter space has a variety of descriptions, one of the most interesting ones
being that it is a maximally symmetric13 solution to Einstein field equations with
a negative cosmological constant. Nevertheless, for the sake of brevity and objec-
tivity, the description used here is the one of a 5-dimensional hypersurface in a
2+4-dimensional Minkowski space.

Consider for that matter the metric in M2,4 in cartesian coordinates (xi)5i=0

ds2 = −dx20 − dx25 +
4∑
i=1

dx2i ,

and the hypersurface given by

x20 + x25 −
4∑
i=1

x2i = R2,

for some real positive R2.

3.3.1 Global Coordinates and General Features

Introduce a new set of coordinates (τ, ρ,Ωi), ρ ≥ 0, τ ∈ [0, 2π), defined by

x0 = R cosh ρ cos τ, x5 = R cosh ρ sin τ

xi = R sinh ρ Ωi, i = 1, ..., 4 :
∑
i

Ω2
i = 1,

that solve the quadric equation defining AdS5. Then

dx20 = R2 (sinh ρ cos τ dρ− cosh ρ sin τ dτ)2

13Carrying the same number of isometry generators as Euclidean space.
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dx25 = R2 (sinh ρ sin τ dρ− p+ cosh ρ cos τ dτ)2

dx2i = R2 (cosh ρ Ωi dρ+ sinh ρ dΩi)
2 .

Substituting this results in the Minkowski metric, and carrying the computation
using trigonometric identities and

ΩiΩ
i = 1 =⇒ ΩidΩi = 0,

it is possible to find the intrinsic metric of the AdS5 hypersurface:

ds2AdS = R2
(
dρ2 + sinh2 ρ dΩ2

i − cosh2 ρ dτ 2
)
.

These are called the global coordinates. Two things should be remarked by the use
of these coordinates: first, the time coordinate is 2π-periodic. This unpleasant
feature can be discarded by unwarping the τ coordinate to −∞ < τ <∞ without
any identifications. By this means the result is the universal cover of AdS5, and
this is what will be used throughout this report. Secondly, at ρ ∼ 0 the metric
reads

ds2AdS ' R2(dρ2 + ρ2 dΩ2
i − dτ 2)

which indicates that AdS5 is isomorphic to a cylinder S1 × R4, as τ is periodic.

Figure 6: Anti-de Sitter as a hypersurface in Minkowski space, in global coordi-
nates.

3.3.2 Poincaré Coordinates

To get the form of the metric found in the near horizon region in the last sub-
section, a new set of coordinates (u, ~x, t), called Poincaré coordinates, must be
used:

x0 =
1

2u
(1 + u2(R2 + ~x2 − t2)), x5 = R u t
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x4 =
1

2u
(1− u2(R2 − ~x2 + t2)), xi = R u xi.

In this new patch the differentials read

dx0 =
([
−x0
u

+R2 + ~x2 − t2
]
du− ut dt+ uxi dxi

)
dx5 = Rt du+Ru dt

dxi = Rxi du+Ru dxi

dx4 =
([
−x4
u
−R2 + ~x2 − t2

]
du− ut dt+ uxi dxi

)
.

Inserting these results on the metric and using the easily confirmed and helpful
results

−x20 + x24 = −R
2

u2
(
−t2 + ~x2 + u2

)
,

and
x0(~x

2 − t2) + x4(t
2 − ~x2) = u2R2(~x2 − t2),

one easily finds in a first computation

−dx20 + dx24 = −R
2

u4
(−t2 + ~x2 − u2)du2 − 2R2(uxi dxidu− ut dtdu),

and

−dx25 + dx21 + dx22 + dx23 = −R2t2 du2 −R2u2 dt2 − 2R2tu dudt+R2x2i du
2

+R2u2 dx2i + 2R2xiu dudxi.

Therefore it is straightforward to see that

ds2AdS =
R2

u2
du2 + u2R2ηµνdx

µdxν ,

where the Lorentz notation is here used to specify the four-vector (t, ~x).
This is the metric of AdS5 expressed in the Poincaré coordinates, but it is not yet
the result found in (13). To find it, define

r = R2u, dr = R2du,

so that

ds2AdS =
R2

r2
R4dr

2

R4
+
r2

R4
R2ηµνdx

µdxν

=⇒ ds2AdS =
R2

r2
dr2 +

r2

R2
ηµνdx

µdxν ,

which is exactly the first two terms in (13). Remark that u has dimension
(lenght)−1 so that r is a length coordinate, as R has dimension (length)1
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3.3.3 Boundary and Conformal Boundary

Introduce a new change in coordinates by z = u−1. Then dz2 = u−4du2 and the
AdS metric reads

ds2AdS = R2z2z−4dz2 +
R2

z2
ηµνdx

µdxν = R2 dz
2 + ηµνdx

µdxν

z2
. (14)

The boundary of AdS is placed on the limit r −→∞, i.e. u −→∞ or z −→ 0.
The horizon, on the other hand, as seen is at r −→ 0, i.e. u −→ 0 or z −→∞.

Using this coordinate patch, it is possible to compute the time needed for a
light-ray to travel radially to the boundary. First, see that

0 = ds2 =
R2

u2
du2 − u2R2dt2 =⇒ du

u
= udt.

Integrate from some region in spacetime u = a, a 6= 0 so that it is not at the
horizon (from where it cannot escape), to the boundary u =∞ to get

∆t =

∫ ∞
a

u−2du <∞.

The light ray can reach the boundary at a finite time, and therefore each point in
AdS is in causal contact with the boundary of the space. This is a very special
feature, clearly not present in Minkowski space; it becomes important to know
what the boundary of AdS5 looks like. To do that, there are at least two basic
constructions, which are presented in the following.

Consider the AdS5 metric above; perform a Wick rotation t −→ itE so that
the Minkowski part of the metric becomes euclidean in the coordinates (tE, ~x).
Now change the names of the coordinates to something more familiar, x0 = z,
x4 = tE. Then the metric is

ds2AdSE =
1

x20

4∑
i=0

dx2i . (15)

These coordinates are called half-plane coordinates as in two dimensions it
describes the half-plane {z ∈ C : Im(z) > 0} with Poincaré metric as given above.
The half plane can be mapped to a ball in euclidean space, as in the figure below in
2-dimensions, where the hole |z| =∞ is mapped to a point u = 0 in the boundary
of the ball.

The boundary u = ∞ is a 4-sphere with one point removed; this is precisely
the result of the compactification of 4-dimensional Euclidean space R4. Perform
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Figure 7: Mapping AdS2 to a disc, as in [1].

the Wick rotation again to get the initial AdS space and finally the conclusion is
that the conformal boundary of AdS5 is compactified Minkowski space M4. Es-
cher’s painting on the title page of this report is a visualisation of this feature of
hyperbolic spaces.

The second, more precise, way of seeing this is by considering the problem in
terms of quadrics. Start with a set of coordinates (u, v, xi) in M2,4 and consider
the quadric equation

uv − ηijxixj = 0. (16)

This quadric is invariant under an overall rescaling u −→ su, v −→ sv,
xi −→ sxi. Use this scaling to fix v = 1 and solve for u

u = ηijx
ixj.

This parametrises the portion of the quadric with v 6= 0, not taken into account in
the previous considerations. So the quadric describes a parametrisation of (3+1)
dimensional Minkowski space plus some points ”at infinity” v = 0. This is pre-
cisely what is obtained from a compactification of Minkowski space.
Indeed, it is analogous to the euclidean case; take for example the compactifica-
tion of the real line into a circle. We may use the stereographic projection as a
map from every point in the real line to every point in the circle, except the pole
P. This point P would correspond to a ”point at infinity” in the real line. The full
circle can be obtained by this procedure simply by adding this point P and de-
manding that every sequence (xn) ⊂ R such that xn −→ ∞ when n −→ ∞, now
in the circle satisfies xn −→ P when n −→ ∞, thus closing the compactification
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completely.

Figure 8: Compactification of the real line into a circle.

Use the same coordinates to write14 AdS5 as

uv − ηijxixj = 1.

Let u, v, xi −→ ∞ and do a conformal transformation by dividing by a positive
constant factor, so that the right-hand side can be neglected and the quadric
(16) is obtained. Then this quadric, the compactification of M4, is the conformal
boundary of AdS5.

14Set R = 1.
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4 The AdS5/CFT4 Correspondence

In this section the results of the previous sections are taken in order to formu-
late the correspondence. The strong form of the conjecture is suggested, and
its formalisation is made using the previous results on the conformal boundary of
AdS. Finally, the holographic principle is derived from black hole thermodynamics
considerations and its realisation in the AdS/CFT correspondence is analysed.

4.1 The Dual Descriptions

In the previous section it was seen that a stack of N D3-branes can be described
by the means of two very different descriptions: on the one hand we obtain N = 4
Super-Yang Mills U(N) theory in the 4-dimensional world-volume. On the other
hand, we can replace the effect of the D3-branes by a non-trivial geometry which
is the manifold AdS5×S5 in the near horizon region. A closer analysis of the the-
ories emerging from this dual description is the next step.

Consider the first encountered description. Taking the low energy limit, the
system is completely described by two theories: a type IIB supergravity theory
living in the bulk, and N = 4 U(N) SYM up to some higher derivative correction
terms. The total action has the form

S = Sbulk + Sbrane + Sint,

where the last term represents the interaction between the bulk states and the
brane states. It can be shown that these interactions are proportional to positive
powers of α′, so that if the limit α′ → 0 is taken while keeping gs, N fixed, these
interactions vanish. Plus, Sbulk becomes type IIB free gravity and Sbrane becomes
pure N = 4 U(N) SYM theory. Therefore the states that survive to this limit can
be fully described by

• 10-dimensional free gravity in the bulk

• 4-dimensional gauge theory in the branes

Consider now the second description of the N D3-branes:

ds2 =
1√
H(r)

ηµνdx
µdxν +

√
H(r)(dr2 + r2dΩ2

5),

H(r) = 1 +
R4

r4
, R4 = 4πgsα

′2N.
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As seen, energies are redshifted by a factor
(

1 + R4

r4

)− 1
4
, so that when taking

the low energy limit states of any mass close to the horizon r = 0 will survive.
Indeed, any state sufficiently close to the horizon will have sufficiently low energy
to survive to the limit. Plus, there are also the massless states away from the
horizon, and these two sets decouple from each other in the limit that is being
taken.
Again, the states that survive can be fully described by

• 10d free gravity in the bulk

• near horizon full theory

Therefore in both approaches two decoupled theories describing all states in
the prescribed limit are obtained. Remember that the near horizon region is
AdS5×S5. If the two approaches are seen as different descritpions of the same
object, as it has been conjectured until now, then this identification forces to
identify the two obtained results so that

N = 4 U(N) SYM in flat 3+1 dimensions

is ”equivalent” to

Type IIB superstring theory on AdS5 × S5.

The strong form of this conjecture applies for any value of gs and N , and is the
one analysed in this report. Remark that, by fully aknowledging this correspon-
dence, no reference is needed from now on to how the argument that was exposed
and leads to this conjecture actually works. In this way, for example when reading
type IIB superstring theory on AdS 5×S 5, it should be read type IIB superstring
theory living in a background which asymptotically is as AdS 5×S 5.

4.1.1 Matching of Symmetries

The conjecture just made seems in a first regard to be more enigmatic than what
it turns out to be. These two theories are completely different: on one hand there
is 10-dimensional string theory, a gravity theory, in a very special spacetime. On
the other hand, there is a U(N) gauge theory, which is, as seen, also a conformal
theory, living in a flat 4-dimensional spacetime!
A first question that should be asked is whether the global symmetries of these
two theories match, and the answer is yes. Indeed, on the string theory side, the
product space AdS5×S5 has isometry group SO(2, 4)×SO(6), the first being the
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manifest isometry group of AdS5, the second rotating the 5-sphere.
On the CFT side, there is a 4-dimensional conformal symmetry SO(2, 4) and a
SO(6) symmetry as seen in section 3.1. So indeed, the bosonic part is seen to
coincide perfectly. In fact, the whole supersymmetric group SU(2, 2|4) matches
in both theories, the strange geometry on the string theory side being respon-
sible for the breaking of half of the supersymmetries. Gauge symmetries, being
redundancies of the description, do not need to match.

4.1.2 Tractable Limits, Validity Regimes and Duality

The strong equivalence relation conjectured previously should be substantiated
with strong evidence for it15. This is the purpose of the remaining of this report.
For that, it is useful to start by considering the consequences of such correspon-
dence between the two theories. The most fundamental one is that there should
exist a map between states and fields on the AdS string side and local gauge
invariant operators on the Yang-Mills CFT side, as well as a correspondence be-
tween correlators. Indeed, the matching of observables between theories is the
ultimate request and a necessity for the theories to be different descriptions of
the same theory, where these observables would take their full meaning.
Even if the conjecture concerns the two complete theories, there are special limits
in which it is possible to see this correspondence somehow closer. One of these
limits is the ’t Hooft limit described in the first part of this report. As it was
seen, a large N limit of a U(N) gauge theory with λ = g2N fixed leads to a topo-
logical expansion as the one found in classical string theory. In the context of the
correspondence, the large N limit of N = 4 U(N) SYM corresponds to a genus
expansion in powers of gs in type IIB string theory.
Another regime expected to have a meaningful result is an α′ expansion in type
IIB supergravity. What is the corresponding behaviour in the CFT part? Use the
AdS metric in the form

ds2AdS = R2 dz
2 + dxµdx

µ

z2
,

and include it in the string theory non-linear sigma model

SG =
1

4πα′

∫
√
γγmnGMN(x;R)∂mX

M∂nX
N

=⇒ SG =
R2

4πα′

∫
√
γγmnGMN(x;R)∂mX

M∂nX
N

where

R2 dz
2 + dxµdx

µ

z2
= ds2AdS = GMNdx

MdxN = R2 GMNdx
MdxN .

15In the perspective of today’s lack of a rigorous proof.
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Keeping in mind equation (11), write R2/4πα′ =
√

4πλ so that the supergravity
α′ expansion corresponds now to a λ−1/2 expansion, meaningful in a large λ limit.

Issuing from the dual description decribed in the last section, the AdS/CFT
correspondence inherits a similar dual behaviour. A perturbative analysis in the
Yang-Mills CFT part of the relation is meaningful when the coupling effective
parameter g2N is small enough. Using relation (11), this is

g2N ∼ gsN ∼
R4

l4s
� 1.

On the other hand, the classical gravity description is valid when the typical radius
of curvature R is large when compared to the string length. Again by equation
(11) this means

R4

l4s
∼ gsN ∼ g2YMN � 1.

These validity regimes are perfectly incompatible, again we find this correspon-
dence as a duality relation. Two important consequences arise from this fact: first,
the duality gives the correspondence a much larger importance from a theoretical
point of view. Clearly, this duality is stating that it is possible to solve a string
theory in a strongly curved background16 by easily solving a gauge theory in a
perturbative expansion. Similarly, it should be possible to solve strongly coupled
gauge theories17 by solving a low curvature string theory, which includes gravity.
It is hard to overestimate the potential importance of such statement.

On the other hand, no rigorous proof or real test was given here, so given this
complete opposition of comprehensible regimes of validity a legitimate question
would be how could this correspondence ever be tested if each side is understand-
able in non-overlapping regimes. One important result would be to compare quan-
tities from both theories which do not depend on the coupling/curvature radius.
This is possible and has been done. Another more significant result obtained from
the research made on this topic in the past 10 years has to do with the subject
of integrability. Briefly stated, the result obtained allows to interpolate between
the two regimes described above to a region where the overlapping happens and
the two theories can be directly compared. This has been done and yields very
promising confirmations of the AdS/CFT correspondence.

16Something which today is not at all obvious in a full quantum level, at least in the author’s
understanding of it.

17Low energy QCD would be rather useful.
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4.2 Formulation of the Correspondence

The precise formulation of the AdS/CFT correspondence may be made using the
results obtained until now. The main problem concerning this formulation is that
it should provide a link between the fields living in AdS5 and the operators in the
CFT4.
As seen, because of the particular form of Anti-de Sitter space, any field theory
in this spacetime needs boundary conditions on its fields for the theory to be
completely determined. This is by no means an easy problem, as boundary and
points in the bulk are causally connected, as seen. It is possible nevertheless to use
this, together with the fact that the conformal boundary of AdS5 is compactified
4-dimensional Minkowski space M4, and introduce a coupling∫

d4x φ0(~x)O(~x) (17)

in the CFT4 side, where O is a CFT operator and φ0(~x) is an arbitrary source
for this operator such that there exists a field φ(~x, z)18 in AdS5 with boundary
condition

φ(~x, z)|z=0 = φ0(~x).

In this way, a link between AdS-fields and CFT-operators is realised as a boundary-
bulk relation, which is by all means possible with what was studied. Of course,
mass dimensions should agree in the appropriate way so that expression (17) is
dimensionless; also the quantum numbers with respect to the full symmetry group
of both the operator O and of the field φ should agree so that the coupling as a
whole is meaningful in the theories.
Since this bulk-boundary relation is also a source-operator correspondence, it is
natural to propose the following statement:

〈e
∫
d4x φ0(~x)O(~x)〉CFT

AdS/CFT
= Zstring

AdS [φ(~x, z)|z=0 = φ0(~x)] , (18)

that is, the generating functional of O-correlation functions in the CFT side
matches the full partition function on the AdS side where the field corresponding
to the operator O is solved having a specific boundary condition. In the end,
when φ(~x) is solved in terms of φ0(~x), i.e. it is on-shell with respect to the action
in AdS5, both sides are functionals of φ0(~x). O-correlation functions on the CFT
side may be computed by taking functional derivatives on the left hand side, and
then letting the sources vanish, as usual by the QFT path integral methods. This
relation then states that by computing the partition function in the AdS side and
taking functional derivatives with respect to the boundary field φ0(~x) the result
should be the same. This will be done in the next section for a massless scalar

18The used coordinate system is the one introduced in (14) after a Wick rotation.
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field, but this is a general proposition applicable in principle to fields of any spin
and mass.

4.3 Holography

Before proceeding to take on hands the problem of computing correlation func-
tions in the context of the correspondence, this section ends with one of the most
promising and fascinating preliminary results of the AdS/CFT correspondence.
This correspondence in its full form is an explicit statement about the equivalence
of two theories, one living in a 5-dimensional spacetime and the other in the usual
4-dimensional Minkowski spacetime, on the boundary of the first as seen. This
equivalence apparently reduces the dimension of the spacetime where the descrip-
tions take its forms by 1 without any further problems. But this mismatching of
dimensions in a boundary-bulk relation seems in a first view very problematic, as
there are degrees of freedom in the 5-dimensional theory which seem to be utterly
redundant.
Throughout this section it will be seen that this is not a problem, it is even a
necessity if a full quantum gravity description is ever to be obtained, by means
of the holographic principle. By the end of the section, the explicit realisation of
this principle in the context of the AdS/CFT correspondence is fully analysed.

4.3.1 Matter Entropy Bound

Black hole thermodynamics, a subject firstly introduced by Hawking and his semi-
classical analysis resulting on what is now called Hawking radiation, yields the
important result concerning black hole entropy:

SBH =
A

4GN

,

where A is the black hole’s event horizon area and GN is Newton’s gravitational
constant. Another feature which is important for the following is the fact that the
black hole’s event horizon area is proportional to the second power of the total
mass19 of the black hole, A ∼M2. Finally, it is important to state the generalised
2nd law of thermodynamics, which aknowledges black hole entropy as a part of the
total entropy of the universe and the unitarity of the processes involving black
holes, e.g. black hole scattering. In this way, it states

dSBH+matter ≥ 0,

19The subject presented in this fashion is only concerned with static black-holes.
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where here and hereon matter refers to non-collapsed matter systems.

Following these assumptions, consider a system composed of matter of mass
m and entropy Smatter and a black hole of mass M and entropy SBH ∼ A ∼ M2.
Let the total system evolve in such a way that the matter enters the event horizon
created by the black hole. Then, the total entropy before and after the collapse
is given by

Sbefore = Smatter +
A

4
,

Safter = S ′BH ∼ A′ ∼ (M +m)2.

The generalised 2nd law requires Sbefore ≤ Safter. However, as the black hole after
the collapsing of the in-falling matter keeps no information about its entropy
Smatter, but only takes its mass m to enlarge its area and thus its entropy, it
is straightforward to see that there must exist an upper limit to Smatter if the
generalised 2nd law is to be true. In other words, a large enough matter entropy
for a small enough mass would violate the 2nd law as presented.
Using these considerations, Bekenstein and Susskind derived generalised matter
entropy bounds by considering specific processes. In particular, by considering
the collapse of a mass shell around a matter system in order to create a black
hole, Susskind derived what is called the spherical entropy bound

S ≤ A

4GN

,

where A is the area of the smallest volume inclosing the system. Black holes
saturate this inequality, and therefore have the highest possible entropy for the
given occupied volume.

4.3.2 The Holographic Principle

Using the thermodynamical relation S = kB lnW , it is then easy to view eS as
the number of independent quantum states compatible with certain macroscopic
parameters. In a full quantum theory of nature, this corresponds to the number
of degrees of freedom of the theory. More precisely,

N ≡ #dof = log dim(H),

dim(H) = eS,

where H is the Hilbert space where the theory is formulated, so that in the end
the entropy S corresponds to the number of degrees of freedom.
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In a standard QFT, the number of degrees of freedom is infinite. Indeed, it is
costumary to view the framework of a QFT as consisting of an harmonic oscillator
in each point in space, which yields an infinite number of degrees of freedom as
a system. When regularised, e.g. to describe some quantum gravity theory, as to
have 1 d.o.f. per Planck volume, the number of degrees of freedom grows as the
volume considered. This is however in contradiction to what has been exposed,
as the correct relation given by the matter entropy bound is that the entropy, i.e.
the number of d.o.f., should grow as the area of the considered volume, S ∼ A.

The holographic principle is obtained by fully aknowledging the previous re-
sults as a principle of nature and by generalising it to all frameworks susceptible
of describing nature. It states

In a quantum theory of gravity all physics within some volume can be
described in terms of some theory on the boundary which has less than
one d.o.f. per Planck area.

This principle is formulated so that every system satisfies the required entropy
bound. For conclusion, our usual theories have a redundacy in the form of useless
degrees of freedom. This redundancy can be solved by considering some corre-
sponding theory on the boundary of the space our theories live in. Even if stated
in a purposely intended fashion so to be used in the AdS/CFT correspondence,
this principle in its general form, and by what has been presented as argument to
it, can be seen to have a faithful realisation in the bulk-boundary relation exposed
to formulate the AdS/CFT correspondence.

4.3.3 AdS/CFT and Holography

The explicit analysis of the holographic character of the AdS/CFT correspondence
is of no trivial matter, contrary to what the explicit boundary-bulk relation may
lead to think. Indeed, the CFT living on the boundary, being a field theory, has
an infinity of degrees of freedom. In the same way, the area of the boundary of
AdS space is infinite, so that in these terms a comparison between the two is
impossible.
In order to be able to make such comparison, a regularisation of the 4-dimensional
boundary space has to be achieved. For that purpose, a discretisation of its spatial
part in terms of small cells of size δ � 1 is made, and 1 d.o.f. is considered per
cell. As the total number of cells is proportional to δ−3, and the theory living on
the boundary is a U(N) gauge theory, the total number of degrees of freedom goes
as

SregCFT ∼ δ−3N2. (19)

30



This UV cut-off introduced in the boundary relates to the bulk AdS theory
by imposing a IR cut-off. This is part of a broader subject usually refered to as
IR-UV connection. It can be seen by considering a string stretching in the bulk
to a point in the boundary. In the boundary theory, it will be seen as a point
particle, and being charged it yields a divergent self-energy. This can be solved
in the CFT context by imposing a UV cut-off to regularise these divergences. In
the AdS string theory part, the string has infinite length, yielding therefore a di-
vergent energy content. In order to regularise this divergence it is possible to cut
the length of the string so that it does not touch the boundary anymore, resulting
by these means in a finite length string. Therefore, the IR-UV connection is a
relation that allows the relating of UV-effects on the boundary with IR-effects in
the bulk. This is a striking feature of such boundary-bulk correspondences.

Then, using the coordinate frame described in (14), this amounts to introduce
a cut-off at z ∼ δ. The metric as given by (15) allows to compute the area of the
hypersurface z ∼ δ:

A =

∫
z∼δ

ds ∼
∫
d3x

R

δ
∼ R3

δ3
.

the 3 coordinates xi being periodic and describing the tangent coordinates to the
ball at a given radius, i.e. for a fixed z. Then, by substituting for δ in (19),

S ∼ N2AR−3.

It should be enough to see thatN2R−3 ∼ G−1N in order to obtain the result required
by the holographic principle and conclude that the AdS/CFT correspondence as
formulated realises this principle.

Start with the 10-dimensional bulk gravitational constant G
(10)
N . In d dimen-

sions, Newton’s constant has dimensions20 (length)d−2 and therefore it may be

written as G
(d)
N ∼ α′(d−2)/2. In d = 10 this yields G

(10)
N ∼ α′4, and using the

identity (11) to find a relatiom between α′ and R,N , it is easy to find

G
(10)
N ∼ R8N−2.

Nevertheless the 10-dimensional bulk space is effectively 5-dimensional, as 5 di-
mensions are compactified into the 5-sphere. Remark the result

G
(d)
N

G
(d′)
N

∼ ld−d
′

c ,

20It couples gravity to the system via a term 1
GN

∫
ddx
√
gR where R is the Ricci scalar which

has dimensions (length)−2.
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where lc is the length of the compactified dimensions21. In this case lc is propor-
tional to R as it is the radius of the 5-sphere. Then it yields

G
(5)
N ∼ R−5G

(10)
N ∼ R3N−2,

which is wanted result. The AdS/CFT correspondence is therefore a holographic
relation.

21See [13] for a derivation of this result.
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5 AdS/CFT Correlation Functions

Consider the formulation of the correspondence given in equation (18), namely

ZCFT [φ0] ≡ 〈e
∫
d4x φ0(~x)O(~x)〉CFT = Zstring

AdS [φ(~x, z)|z=0 = φ0(~x)] .

The computation of O-correlatiom functions is achieved by

〈O...O〉 =
δnZCFT [φ0]

δφn0

∣∣∣∣
φ0=0

.

By the above statement ZCFT can be made to correspond to Zstring
AdS . In partic-

ular, as φ(~x, z) solves the equations of motion derived from SAdS5 with the given
boundary condition, Zstring

AdS is a functional of φ0(~x) and the functional derivative
as stated has a meaning.
The uniqueness of the extension of φ0 to φ is guaranteed if suitable boundary con-
ditions are chosen. As the equations of motion in AdS are usually second-order
differential equations, two boundary conditions are needed. On the other hand,
it is not a valid request to ask for φ(~x, z = 0) = φ0(~x) since the AdS metric blows
up at the boundary z = 0. Instead, the appropriate is to ask

φ(~x, z) ∼ f(z)φ0(~x)

for a well suited function f(z). This is usually done by requiring some normal-
isability condition. The second boundary condition is usually imposed on the
interior of AdS, namely some requirement at the horizon z −→∞.

5.1 Massless Scalar Field 2-point Function

Consider the AdS action in d+ 1 dimensions of a massless scalar field:

SAdS [φ] =
1

2

∫
dd+1x

√
g (∂φ)2.

Following the presented method, the idea is to solve φ in terms of φ0 with a reg-
ularised boundary condition, then evaluate S [φ] on φ such that the action is a
functional of φ0 and finally take functional derivatives with respect to φ0, hoping
to obtain CFT correlation functions by the AdS/CFT correspondence formulation.

A first simplification can be done by integrating SAdS by parts. The term
giving the equations of motion is zero by the vanishing of the action variation and
the remaining regularised-boundary term is
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SAdS [φ] = lim
ε→0

1

2

∫
Tε

ddx
√
h φ ∂nφ, (20)

where the boundary has been regularised so that the integral is made on the sur-
face Tε = {(~x, z) : z ∼ ε}. Furthermore, h is the determinant of the induced
metric on Tε and ∂n denotes the derivative normal to this surface.

Start by recalling the Euclidean form of the AdSd+1 metric:

ds2 =
1

z2

(
d∑
i=1

dx2i + dz2

)
,

where it is set R = 1 for simplicity. Solve the equations of motion ∆φ(~x, z) = 0
by the use of a Green’s function K(~x− ~x′, z) such that

φ(~x, z) =

∫
d~x′ K(~x− ~x′, z)φ0(~x

′),

where the Green’s function must satisfy

∆~x,zK(~x− ~x′, z) = 0,

by the equations of motion and

K(~x− ~x′, z) −→ f(z)δ(~x− ~x′),

by the boundary condition.
The symmetry of the metric rotating the xi, together with the fact that the
boundary condition will be taken at ~x′ being the point at infinity, so that K is
invariant under translations of |~x|, implies that K(~x, z) = K(z). Therefore the
first condition for K(z) reads

0 = ∆K =
1
√
g
∂µ
√
ggµν∂νK =

1
√
g
∂z
√
ggzz∂zK,

where the last relation is obtained by the form of the metric and because of the
symmetry consideration just referred.
In view of the metric it is easy to infer the results

√
g = z−d−1,

gzz = z2,
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as the computation is made in d+1 dimensions and the last identity being achieved
not for the metric but its inverse. Then the Green’s function must solve

0 = zd+1∂z
(
z−d−1z2∂zK(z)

)
=⇒ z−d+1∂zK(z) = c

=⇒ ∂zK(z) = czd−1

=⇒ K(z) =
czd

d
+ b

where b, c are integration constants. Fix the constants by demanding the solution
to vanish at the boundary22 z = 0, so that b = 0, and by setting the singularity
at z = ∞ to be a δ-function at some ~x. To clearly see this, perform a SO(1,d)
transformation23, which is the isometry group of the space the field lives in, defined
by

xµ −→
xµ

z2 +
d∑
i=1

x2i

, µ = 0, ..., d and z = x0,

so that the z =∞ point is mapped to z = 0, and therefore

K(~x, z) =
c

d

zd(
z2 +

d∑
i=1

x2i

)d .
When z −→ 0, this Green’s function vanishes everywhere except at x1 = ... =

xd = 0. It can be shown by integration that K is actually a δ-function supported
at this point, with a suitable choice of the constant c, with f(z) = 124.

Write now the solution for φ using this Green’s function as

φ(~x, z) =
c

d

∫
d~x′

zd

(z2 + |~x− ~x′|2)d
φ0(~x

′).

Take the derivative of this solution with respect to z (it will be needed when
computing (20)):

∂zφ(~x, z) =
c

d

∫
d~x′

(
d zd−1

(z2 + |~x− ~x′|2)d
− d zd

(z2 + |~x− ~x′|2)d+1
2z

)
φ0(~x

′).

22As it was seen in the ball form of the metric, the boundary includes a z = 0 surface and a
point z =∞.

23This is simply a Euclidean version of a special conformal transformation in SO(2,d-1), as
we are in Euclidean AdS space.

24This is a particular property of the massless scalar field, and is not true in general.
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The evaluation of the action (20) only concerns the limit z −→ 0. In this limit
this derivative becomes

∂zφ(~x, z) = c

∫
d~x′

(
zd−1(z2 + |~x− ~x′|2)− 2zd+1

(z2 + |~x− ~x′|2)d+1

)
φ0(~x

′)

= c

∫
d~x′

(
zd+1 + zd−1(|~x− ~x′|2)− 2zd+1

(z2 + |~x− ~x′|2)d+1

)
φ0(~x

′)

= czd−1
∫
d~x′

φ0(~x
′)

|~x− ~x′|2d
+O(zd+1).

Consider now the normal derivative. The normal vector is a vector whose
components are zero except in the z-direction:

nµ =
1

N
(1, 0, ..., 0),

where N is a normalisation factor which can be computed:

1 = gµνnµnν = gzz
1

N2
= z2

1

N2
,

so that N = z by chosing the right orientation. Then it is easy to conclude

∂nφ = nµg
µν∂νφ = nzg

zz∂zφ =
1

z
z2∂zφ,

so that ∂n = z∂z.

It is now possible to evaluate the action (20) using these results. First, remark
that

lim
ε→0

φ = φ0

so that inside (20) the φ term can be replaced by φ0, in view of the limit being
taken. The induced metric on the hypersurface Tε is simply

√
h = z−d,

and therefore (20) reads

SAdS [φ0] =
1

2

∫
d~xz−d φ0(~x) zczd−1

∫
d~x′

φ0(~x
′)

|~x− ~x′|2d

=
c

2

∫
d~xd~x′

φ0(~x)φ0(~x
′)

|~x− ~x′|2d
.
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By the formulation of the AdS/CFT correspondence in (18) the functional
derivative of this action with respect to φ0 should give O CFT correlation func-
tions. Indeed:(

−i δ

δφ0(~y)

) (
−i δ

δφ0(~z)

)
e−iSAdS [φ0] |φ0=0 =

=
c

2

∫
d~xd~x′

[
1

|~x− ~x′|2d
δ(~x− ~y)δ(~x′ − ~z) + (~z ↔ ~y)

]
=⇒ 〈O(~y)O(~z)〉 =

c

|~y − ~z|2d
.

This is precisely the 2-point correlation function of a CFT operator with con-
formal dimension ∆ = d.
Also, the 1-point function is

〈O(~y)〉 =

(
−i δ

δφ0(~y)

)
e−iSAdS [φ0] |φ0=0 = 0,

as required by conformal invariance, since a non-zero vacuum expectation value
of some operator would explicitly break dilation-invariance.

This same treatment, but in a more complex form where the boundary be-
haviour has to be carefully chosen and where the equations of motion do not
admit such a simple form, can be made for a massive scalar field. The result is
the same, where the conformal dimension of the associated CFT operator is

∆ =
1

2

(
d+
√
d2 + 4m2R2

)
,

where the AdS radius R is recovered. There is therefore an explicit relation
between the mass of a field propagating in AdS space and the corresponding CFT
operator’s conformal dimension in the boundary. For a more profound discussion
of this result, see [9]. For an exposition of the correspondence between fields and
operators for any quantum numbers (and thus in particular any spin and mass)
see [5] and [9].

5.2 General Method for Massive Scalar Field n-point Func-
tion

Consider a general Lagrangian density for interacting scalar fields in AdS5:

SAdS =

∫
d5x
√
g

(
1

2
(∂φi)

2 +
1

2
m2
iφ

2
i +

m∑
k=3

λi1...ikφi1 ...φik

)
.
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Each scalar field has a typical equation of motion of the form

(� +m2)φ = λφn.

It is possible to treat this system perturbatively in λ by means of a similar method
of standard QFT. Expand the field solution as

φ = φzero + λφone + λ2φtwo + ...

and insert it in the equations of motion,

(� +m2)(φzero + λφone + ...) = λ(φzero + λφone + ...)n.

Match equal powers of λ on both sides and get:

at λ0 : φzero(x, z) =

∫
K(x− x′, z) φ0(x

′)

at λ1 : φone(x, z) =

∫
G(x− x′, z − z′)(φzero(x′, z′))n

where G(x− x′, z − z′) is called bulk-to-bulk Green’s function, satisfying

(� +m2)G(x− x′, z − z′) =
1
√
g
δ(z − z′)δ(~x− ~x′).

The expansion can be carried to any desired power of the coupling, and its meaning
(or lack of it) depends of course on the details of the theory at work. The method
can be generalised, with more or less effort, to any theory, containing also fields of
other spin quantum numbers, where such a perturbation analysis is useful. The
corresponding Feynman diagrams, called Witten diagrams, are shown in the figure
below.

Figure 9: Witten diagrams: Feynman diagrams in the context of the AdS/CFT
correspondence.
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6 Conclusion

The AdS/CFT conjecture is a powerful and promising correspondence issuing
from a dual description of a stack of N D3-branes. A first description uses string
theory on D3-branes to see emerge a gauge theory on the world-volume of the
stack. In the second description, the reaction of the geometry of spacetime to this
charged and massive stack of objects is used as influence on string states. In a
low energy limit, this double description gets its full meaning as presented here,
and the analysis of such systems in such limit allows a detailed account for the
states described by both views.
The assumption of such theories as being each on its own right a good description
of the system allows to conjecture an equivalence between the emerging com-
plete theories. These two theories are very different in format and content, one
is a string theory living in a curved spacetime with half of the dimensions com-
pactified into a sphere, the other a conformal gauge theory in a flat spacetime.
The spacetime symmetries are nevertheless seen to match, and in the roll of con-
sequences of such conjecture it is possible to match also correlation functions,
and a precise link with the holographic principle is obtained. This issues from
the formulation of the correspondence as a bulk-boundary relation, that allows
for a statement about the coupling of observables on both sides of the equivalence.

Nevertheless no proof is given in any circumstance, and it is not obvious it
should be an attainable objective. Recent works on integrability showed it is
possible to interpolate the dual behaviour of the theories involved in this corre-
spondence and compare them in a meaningful way, with successful results. The
strong evidence for a full aknowledgement of the conjecture, presented in this
report, as well as many others more detailed arguments not presented, give an
insight on this theoretical result which could in the best of hypothesis be used to
describe and solve many problems of today’s physical description of nature.
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