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Exercise 1. Contextuality: understanding through engineering

This problem challenges you to devise correlations that cannot be explained by a noncontex-
tual hidden variable model (throughout this problem, “noncontextual” refers to the traditional
notion of a noncontextual model, i.e. one that is measurement-noncontextual and outcome-
deterministic). Note that we are not going to worry about whether these correlations can be
reproduced by quantum theory or not. Therefore, the solution to this problem makes no ref-
erence to the quantum formalism at all. The purpose is to try and clarify the content of the
assumption of noncontextual hidden variable models by exploring fictitious worlds, i.e. worlds
with experimental correlations that need not be described by a quantum or a classical theory.

Recall from the lecture the following simple example of such correlations, devised by Ernst
Specker in 1960. Imagine a world wherein there is a system upon which one can implement three
distinct measurements each of which has two outcomes. We will denote the measurements by
M1,M2 and M3 and take the outcome set for each to be {0, 1} . Imagine that the following
pattern of joint measurability applies to these measurements: any pair can be implemented
jointly, but it is impossible to measure all three jointly. (Aside: this sort of pattern of joint
measurability does not arise in quantum theory). The correlations are as follows: if any pair of
distinct measurements are implemented jointly, then their outcomes are always anticorrelated –
one is 0 and the other is 1. Call these the Specker correlations.

In a traditional noncontextual hidden variable model, the ontic state specifies an outcome for
each measurement, that is, the ontic state prescribes a triple, X1, X2 and X3, where Xi is the
value that would be revealed by a measurement of Mi, regardless of which other measurement
it is implemented jointly with. For instance, if the ontic state specifies that M1 yields the value
X1 when it is measured jointly with M2, then it specifies that M1 must also yield the value X1

when it is measured jointly with M3.

There are many ways to see that there is no traditional noncontextual hidden variable model
for the Specker correlations.

For instance, it suffices to note that there are eight possible value-assignments to (X1, X2, X3),
namely, (0, 0, 0) , (0, 0, 1) , (0, 1, 0) , . . . (1, 1, 1) . And for each of these, we can have anticorrelation
for at most two of the three possible pairs of measurements that can be performed. For instance,
(0, 1, 0) yields anticorrelation for joint measurements of M1 and M2 and for joint measurements
of M2 and M3, but correlation for joint measurements of M1 and M3.

Another way to see the impossibility of a traditional noncontextual model for these correlations

is as follows. If X
(ij)
i denotes an outcome of Mi when it is measured as part of the pair Mi and

Mj , then the outcomes are assumed to satisfy the following constraints:
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A noncontextual hidden variable model specifies that

X
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but given these equalities, Eqs. (1)-(3) cannot be satisfied.
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but given these equalities, Eqs. (1)-(3) cannot be satisfied.

Figure 1: The pattern of joint measurablility for the Specker example

It is useful to represent such correlations by networks, where the di↵erent nodes represent the di↵erent
measurements and the presence of a continuous line connecting a set of nodes represents the fact
that the associated measurements can be implemented jointly. Fig. 1 illustrates the pattern of joint
measurability for the Specker example. It is critical to note that the di↵erent continuous lines in the
graphs represent di↵erent counterfactual possibilities for the joint measurement – in any given run of
the experiment, only the set of measurements along one of the lines can be implemented. Di↵erent
lines correspond to “complementary” possibilities. The correlations that hold among the outcomes
of a set of measurements when these are implemented jointly are not illustrated in a figure of this
sort, however one could achieve this by labeling the edges (as was done in class, where a dashed edge
represented anticorrelation and a solid edge represented correlation).
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Figure 1: The pattern of joint measurablility for the Specker example

It is useful to represent such correlations by networks, where the different nodes represent the
different measurements and the presence of a continuous line connecting a set of nodes repre-
sents the fact that the associated measurements can be implemented jointly. Fig. 1 illustrates
the pattern of joint measurability for the Specker example. It is critical to note that the dif-
ferent continuous lines in the graphs represent different counterfactual possibilities for the joint
measurement – in any given run of the experiment, only the set of measurements along one of
the lines can be implemented. Different lines correspond to “complementary” possibilities. The
correlations that hold among the outcomes of a set of measurements when these are implemented
jointly are not illustrated in a figure of this sort, however one could achieve this by labeling the
edges (as was done in class, where a dashed edge represented anticorrelation and a solid edge
represented correlation).

At the end of this question, we provide many more examples of correlations that do not admit
of a noncontextual hidden variable model, to give you an impression of their diversity. Go over
the examples and make sure that you understand why these correlations cannot be explained
with an outcome-deterministic measurement-noncontextual hidden variable model.

Your mission in this tutorial (should you choose to accept it) is to generate more examples of
this phenomena. You may want to start with generalizations of the ones presented here, and
think about families of examples that can be generated by such generalizations. Ultimately,
however, the goal is for you to devise some examples that are as different as possible from
the ones presented here (or seen in class). Be creative, talk to each other and share your ideas!

Just to be absolutely clear on what’s being asked of you, here is what you must specify for each
example you devise:

1) The nature of the measurements. How many measurements are there? For each mea-
surement, how many outcomes does it have? (In all the examples we’ve provided, every
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measurement has only two outcomes, but you shouldn’t necessarily restrict yourself to
such cases).

2) The pattern of joint measurability. Which subsets of measurements can be implemented
jointly? (Note that in each of the examples presented in the gallery, the pattern of joint
measurability is described by a diagram. These diagrams should be considered as a way
to prime your ideas about possible such patterns, rather than as a constraint on the form
in which you should present your examples. You might well find interesting examples that
do not easily admit of a diagrammatic representation.)

3) The correlations. For each subset of measurements that can be implemented jointly, what
is the probability distribution over the possible joint outcomes? (It may be sufficient to
just specify certain features of this probability distribution – for instance, in the Specker
correlations it was sufficient to say that the outcomes are anticorrelated without specifying
the relative probability of (0, 1) and (1, 0).)

Finally, you must be able to show that there is no outcome-deterministic measurement-noncontextual
hidden variable model for your example. Specifically, if there are N measurements, you must
show that there is no joint value assignment to variables (X1, ..., XN ) that is consistent with the
correlations you have posited.

Good luck!

For the extra-adventurous: If you are particularly pleased with one of your examples and you
become curious about whether it might lead to a novel proof of the impossibility of a noncontex-
tual hidden variable model within quantum theory, then to satisfy your curiosity, you may
want to ask yourself the following questions: (1) Is the pattern of joint measurability posited in
the example achievable in quantum theory? (For the Specker example above, it is not), (2) From
your example, can you devise an inequality that must be respected by experimental statistics?
For instance, you could ask: if one of the sets of measurements that can be implemented jointly
is chosen uniformly at random from among all such sets, what is the maximum probability of
generating the correct correlations within a noncontextual hidden variable model? (For the
Specker parable, it is 2/3, for the CHSH game, it is 3/4, for Mermin’s magic square, it is 5/6.)
This upper bound on the maximum probability is an example of such an inequality. (3) Can
you find a set of projection-valued measures representing your measurements and a quantum
state such that the correlations these predict violate your inequality? If you get this far, and
the example is new, the next step is to publish.

A gallery of examples of contextuality

Popescu-Rohrlich correlations

These correlations, although usually presented in proofs of nonlocality, are also an example of
correlations that do not admit of a noncontextual hidden variable model. There are four mea-
surements, which we denote M1,M2,M3,M4, each of which has two possible outcomes. The
pattern of joint measurability is that we can measure any one of the following pairs: {M1,M3} ,
{M2,M3} , {M1,M4} , and {M2,M4} , but any other subset of two or more measurements can-
not be measured jointly. The correlations are as follows: perfect correlation for {M1,M3} ,
{M2,M3} and {M1,M4} , perfect anticorrelation for {M2,M4} . We see that there is no outcome-
deterministic noncontextual hidden variable model because noncontextual values (drawn from
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{0, 1}) would need to satisfy X1 = X3, X2 = X3, X1 = X4 and X2 = (X4 + 1) mod2, which is a
contradiction. As a network, the correlations appear as follows:

measurements and a quantum state such that the correlations these predict violate your inequality?
If you get this far, and the example is new, the next step is to publish.

1.1 A gallery of examples of contextuality

Popescu-Rohrlich correlations

These correlations, although usually presented in proofs of nonlocality, are also an example of corre-
lations that do not admit of a noncontextual hidden variable model. There are four measurements,
which we denote M1, M2, M3, M4, each of which has two possible outcomes. The pattern of joint mea-
surability is that we can measure any one of the following pairs: {M1, M3} , {M2, M3} , {M1, M4} ,
and {M2, M4} , but any other subset of two or more measurements cannot be measured jointly.
The correlations are as follows: perfect correlation for {M1, M3} , {M2, M3} and {M1, M4} , perfect
anticorrelation for {M2, M4} . We see that there is no outcome-deterministic noncontextual hidden
variable model because noncontextual values (drawn from {0, 1}) would need to satisfy X1 = X3,
X2 = X3, X1 = X4 and X2 = (X4 + 1) mod2, which is a contradiction. As a network, the correlations
appear as follows:

Figure 2: Joint measurability in the CHSH proof

Mermin’s magic square

This example was also considered in lecture. There are nine two-outcome measurements, denoted
M1, M2, . . . M9, for which only the triples corresponding to the rows and columns in fig. 3 can be
measured jointly.

Adopt the convention wherein the outcomes of all the measurements are labeled by {+1,�1}. The
correlations are as follows: for five out of the six triples of measurements, the product of the outcomes
is 1, while for the last triple, the product is �1. (Equivalently, if we label the outcomes by {0, 1},
then five out of the six triples yield outcomes with total parity 0, while one yields outcomes with
total parity 1.) It is not hard to see that no noncontextual values can reproduce these correlations.
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Figure 2: Joint measurability in the CHSH proof

Mermin’s magic square

Figure 3: The joint-measureability of measurements in Mermin’s magic square example

Mermin’s magic pentagram

Figure 4: Mermin’s magic pentagram example

In this example, also due to Mermin, there are ten two-outcome measurements, denoted M1, M2, . . . M10,
for which only the quadruples along one of the five lines shown in fig. 4 can be measured jointly.

As in the previous example, the outcomes of all the measurements are labeled by {+1,�1}. The
correlations for this example are as follows: for four out of the five quadruples of measurements, the
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Figure 3: The joint-measureability of measurements in Mermin’s magic square example

This example was also considered in lecture. There are nine two-outcome measurements,
denoted M1,M2, . . .M9, for which only the triples corresponding to the rows and columns in
fig. 3 can be measured jointly.

Adopt the convention wherein the outcomes of all the measurements are labeled by {+1,−1}.
The correlations are as follows: for five out of the six triples of measurements, the product of
the outcomes is 1, while for the last triple, the product is −1. (Equivalently, if we label the
outcomes by {0, 1}, then five out of the six triples yield outcomes with total parity 0, while one
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yields outcomes with total parity 1.) It is not hard to see that no noncontextual values can
reproduce these correlations.

Mermin’s magic pentagram

Figure 3: The joint-measureability of measurements in Mermin’s magic square example

Mermin’s magic pentagram

Figure 4: Mermin’s magic pentagram example

In this example, also due to Mermin, there are ten two-outcome measurements, denoted M1, M2, . . . M10,
for which only the quadruples along one of the five lines shown in fig. 4 can be measured jointly.

As in the previous example, the outcomes of all the measurements are labeled by {+1,�1}. The
correlations for this example are as follows: for four out of the five quadruples of measurements, the
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Figure 4: Mermin’s magic pentagram example

In this example, also due to Mermin, there are ten two-outcome measurements, denoted M1,
M2,. . .M10, for which only the quadruples along one of the five lines shown in fig. 4 can be
measured jointly.

As in the previous example, the outcomes of all the measurements are labeled by {+1,−1}. The
correlations for this example are as follows: for four out of the five quadruples of measurements,
the product of the outcomes is 1, while for the last quadruple, the product is −1. Again, it is
not hard to see that no noncontextual values can reproduce these correlations.

GHZ correlations

In this example there are six possible two-outcome measurements, denoted M1,M2, . . .M6. The
four lines shown in fig. 5 indicate which triples are jointly measurable. Sticking with our con-
vention of labeling the outcomes of measurement by {+1,−1}, the correlations are as follows:
for three of the four triples the product of outcomes is +1 while for the fourth it is −1. Again,
it is straight-forward to verify that no noncontextual values can reproduce these correlations.
This is the basis of the Greenberger, Horne and Zeilinger (GHZ) proof of nonlocality, although
here we are presenting it as a proof of contextuality.

Hardy-type version of Specker’s example

In this example, the pattern of joint measurability is the same as in the Specker example,
depicted in fig. 1. The correlations, however, are different. In a joint measurement of M1 and
M2, it is assumed that the probability distribution over the four possible outcomes (denoted
(X1,X2)) assigns non-zero probability to (0, 0), (0, 1) and (1, 0), and zero probability to (1, 1).
In this case, we can be sure that if, in a joint measurement of M1 and M2, M1 yields outcome
X1 = 1, then M2 must yield outcome X2 = 0. The same probability distribution over outcomes
is assumed to arise for a joint measurement of M3 and M1, while for a joint measurement of M2

and M3, it is the (0, 0) outcome that is assigned zero probability, while the others are assigned
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product of the outcomes is 1, while for the last quadruple, the product is �1. Again, it is not hard
to see that no noncontextual values can reproduce these correlations.

GHZ correlations

In this example there are six possible two-outcome measurements, denoted M1, M2, . . . M6. The four
lines shown in fig. 5 indicate which triples are jointly measurable. Sticking with our convention of
labeling the outcomes of measurement by {+1,�1}, the correlations are as follows: for three of the
four triples the product of outcomes is +1 while for the fourth it is �1. Again, it is straight-forward
to verify that no noncontextual values can reproduce these correlations. This is the basis of the
Greenberger, Horne and Zeilinger (GHZ) proof of nonlocality, although here we are presenting it as
a proof of contextuality.

Figure 5: Joint measurability in the GHZ proof

Hardy-type version of Specker’s example

In this example, the pattern of joint measurability is the same as in the Specker example, depicted
in fig. 1. The correlations, however, are di↵erent. In a joint measurement of M1 and M2, it is
assumed that the probability distribution over the four possible outcomes (denoted (X1,X2)) assigns
non-zero probability to (0, 0), (0, 1) and (1, 0), and zero probability to (1, 1). In this case, we can be
sure that if, in a joint measurement of M1 and M2, M1 yields outcome X1 = 1, then M2 must yield
outcome X2 = 0. The same probability distribution over outcomes is assumed to arise for a joint
measurement of M3 and M1, while for a joint measurement of M2 and M3, it is the (0, 0) outcome
that is assigned zero probability, while the others are assigned nonzero probability. Finally, it is
assumed that when M1 is measured with M2, the outcome X1 = 1 occurs with nonzero probability.
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Figure 5: Joint measurability in the GHZ proof

nonzero probability. Finally, it is assumed that when M1 is measured with M2, the outcome
X1 = 1 occurs with nonzero probability. It is not too difficult to see that these correlations
cannot arise in a noncontextual hidden variable model. In order to explain the fact that X1 = 1
occurs with nonzero probability in a measurement of M1, such a model must posit at least one
ontic state which fixes the outcome of M1 to be X1 = 1. However, for this ontic state, the
outcome of M2 would have to be X2 = 0 because otherwise a joint measurement of M1 and M2

would sometimes yield the (1, 1) outcome. Furthermore, for this ontic state, the outcome of M3

would have to be X3 = 1 because otherwise a joint measurement of M2 and M3 would sometimes
yield the (0, 0) outcome. Finally, for this ontic state, the outcome of M1 would have to be X1 = 0
because otherwise a joint measurement of M3 and M1 would sometimes yield the (1, 1) outcome.
But by assumption X1 = 1 for this ontic state, so we have arrived at a contradiction. We can
summarize the example as follows. The following implications hold: X1 = 1 =⇒ X2 = 0,
X2 = 0 =⇒ X3 = 1, X3 = 1 =⇒ X1 = 0 (see fig. 6 for an illustration of these implications).
Furthermore, it is sometimes the case that X1 = 1, which by the chain of implications yields
X1 = 0, a contradiction.
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Figure 6: Hardy-type version of Specker’s example

It is not too di�cult to see that these correlations cannot arise in a noncontextual hidden variable
model. In order to explain the fact that X1 = 1 occurs with nonzero probability in a measurement
of M1, such a model must posit at least one ontic state which fixes the outcome of M1 to be X1 = 1.
However, for this ontic state, the outcome of M2 would have to be X2 = 0 because otherwise a joint
measurement of M1 and M2 would sometimes yield the (1, 1) outcome. Furthermore, for this ontic
state, the outcome of M3 would have to be X3 = 1 because otherwise a joint measurement of M2 and
M3 would sometimes yield the (0, 0) outcome. Finally, for this ontic state, the outcome of M1 would
have to be X1 = 0 because otherwise a joint measurement of M3 and M1 would sometimes yield the
(1, 1) outcome. But by assumption X1 = 1 for this ontic state, so we have arrived at a contradiction.
We can summarize the example as follows. The following implications hold: X1 = 1 =) X2 = 0,
X2 = 0 =) X3 = 1, X3 = 1 =) X1 = 0 (see fig. 6 for an illustration of these implications).
Furthermore, it is sometimes the case that X1 = 1, which by the chain of implications yields X1 = 0,
a contradiction.
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Figure 6: Hardy-type version of Specker’s example
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