
The traditional notion of 
noncontextuality

in quantum theory
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|ψ3〉

|ψ2〉

Deterministic hidden variable model for pure 
states and projective measurements

Note: the outcomes are 
deterministic given λ



A given vector may appear in many different measurements
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The traditional notion of noncontextuality:
Every vector is associated with the same 
regardless of how it is measured (i.e. the context)

Traditional notion of noncontextuality
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The traditional notion of noncontextuality (take 2):
For every λ, every basis of vectors receives a 0-1 valuation, 
wherein exactly one element is assigned the value 1 
(corresponding to the outcome that would occur for λ), and 
every vector is assigned the same value regardless of which 
basis it is considered a part (i.e. the context).
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Ernst Specker (with son) and 
Simon Kochen

Bell-Kochen-Specker theorem: A traditional noncontextual
hidden variable model of quantum theory for Hilbert spaces of 
dimension 3 or greater is impossible. 

John S. Bell



Example: The CEGA 18 ray proof in 4d:
Cabello, Estebaranz, Garcia-Alcaine, Phys. Lett. A 212, 183 (1996)
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If we list all 9 orthogonal quadruples, each ray appears twice in the list 

In each of the 9 quadruples, one ray is assigned 1, the other three 0
Therefore, 9 rays must be assigned 1 

But each ray appears twice and so there must be an even number
of rays assigned 1

CONTRADICTION!



Example: Kochen and Specker’s original 117 ray proof in 3d





The traditional notion of noncontextuality (take 3):
For every λ, every projector     is assigned a value 0 or 1 
regardless of which basis it is a coarse-graining of 
(i.e. the context)

Coarse-graining of a measurement implies a coarse-
graining of the value (because it is just post-processing) 

Every measurement has some outcome

for all



the value assigned to A should be independent of whether it is 
measured together with B or together with C (i.e. the context)

The traditional notion of noncontextuality (take 4):

Measure A = measure projectors onto eigenspaces of A,

Measure A in context of B 
= measure projectors onto joint eigenspaces of A and B, 
then coarse-grain over B outcome

is independent of context is independent of context

For Hermitian operators A, B, C satisfying

Measure A in context of C 
= measure projectors onto joint eigenspaces of A and C, 
Then coarse-grain over C outcome



Functional relationships among commuting Hermitian operators 
must be respected by their values

Proof: the possible sets of eigenvalues one can simultaneously 
assign to L, M, N,… are specified by their joint eigenstates. By 
acting the first equation on each of the joint eigenstates, we get the 
second.

If

then



Example: Mermin’s magic square proof in 4d

I

I

I

I I −I

v(X1) v(X2) v(X1X2) = 1

v(Y1) v(Y2) v(Y1Y2) = 1

v(X1Y2) v(Y1X2) v(Z1Z2) = 1

v(X1) v(Y2) v(X1Y2) = 1

v(Y1) v(X2) v(Y1X2) = 1

v(X1X2) v(Y1Y2) v(Z1Z2) = −1

X1 X2

Y2 Y1

X1X2

Y1Y2

Z1Z2X1Y2 Y1X2

Product of LHSs = +1
Product of RHSs = -1

CONTRADICTION

X1 X2 (X1X2) = I

Y1 Y2 (Y1Y2) = I

(X1Y2) (Y1X2) (Z1Z2) = I

X1 Y2 (X1Y2) = I

Y1 X2 (Y1X2) = I

(X1X2) (Y1Y2) (Z1Z2) = −I



Problems with the traditional definition of noncontextuality:
- applies only to projective measurements
- applies only to deterministic hidden variable models
- applies only to models of quantum theory

An operational notion of noncontextuality would determine
- whether any given operational theory admits of a 

noncontextual model
- whether any given experimental data can be explained by 

a noncontextual model



The traditional notion of 
noncontextuality

extended to 
any operational theory



Operational theories

These are defined as lists of instructions

Preparation Measurement 

An operational theory specifies

The probability of outcome k of 
M given P



Preparation 
P

A deterministic hidden variable model of an operational theory

Measurement
M

Specifies an ontic state space Λ
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Operational equivalence 
classes of measurements



Operational definition of joint measurability
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Operational definition of joint measurability
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One for which:
Outcomes are fixed deterministically by the ontic state λ

Outcomes are independent of the context of the measurement

M8

M1

M2

M3

Definition of a traditionally noncontextual hidden variable model
for an operational theory

Example:
M1 and M2 jointly measurable
M1 and M3 jointly measurable

Outcome assigned to M1 by λ is 
independent of context



Ernst Specker, “The logic 
of propositions which are 
not simultaneously 
decidable”, Dialectica 14, 
239 (1960).



If the outcomes are fixed deterministically by the ontic state and are 
independent of the context in which the measurement is performed, then

M
1

M
2M

3

Specker’s example

p(success) ≤ 2
3



Frustrated Networks
Nodes are binary variables

Outcomes agree
Outcomes disagree

Frustration = no valuation satisfying all correlations 

Edges imply joint measurability
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p(success) ≤ 3
4

If the outcomes are fixed deterministically by the ontic state and are 
independent of the context in which the measurement is performed, then
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Locality + Determinism 
� independence of outcomes on remote contexts
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Preparation: the ψ that lies on the symmetry axis

Klyachko’s example
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Quantum probability of success
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A generalized notion of 
noncontextuality

for any operational theory



Preparation 
P

A hidden variable model of an operational theory

Measurement
M

Specifies an ontic state space Λ



A hidden variable model of an operational theory is 
noncontextual if

Operational equivalence 
of two experimental 

procedures

Equivalent representations 
in the hidden variable 

model

Generalized definition of noncontextuality:



Measurement
noncontextuality
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