
Solid State Theory

Solution Sheet 11
FS 12

Prof. M. Sigrist

Exercise 11.1 Relaxation time approximation

a) The transition rates are computed by use of Fermi’s golden rule, relating the proba-
bility for a process to occur to the quantum mechanical matrix elements of scattering
off a single impurity a weighting with the impurity density (cf. section 6.3 of the
lecture notes)

W (k,k′) =
2π nimp

~
|〈k′|V̂imp|k〉|2δ(εk − εk′) (1)

The matrix elements1 〈k′|V̂ |k〉 = V (k − k′) are given by the Fourier transform of
the potential V (r) ∼ δ(r)

V (k − k′) =
1

2π

∫
d2r ei(k−k

′)·rV0δ(r)

=
1

2π
V0. (2)

Thus, the transition rates are given as

W (k,k′) =
nimp

2π~
V 2

0︸ ︷︷ ︸
W0

δ(εk − εk′), (3)

and given the isotropy of the energy εk ∼ k2 they do not depend on k or k′ as long
as the energy is conserved.

b) In the static limit, the left hand side of the Boltzmann equation

∂f(r,k, t)

∂t
+ ∇rf(r,k, t) · dr

dt
+ ∇kf(r,k, t) · (eE/~) (4)

reduces with f(r,k, t) = f(k) to the third term proportional to the driving external
field. We restrict our considerations to linear order in E since we are interested
in linear response to the driving force. In consequence, we must replace ∇kf with
∇kf0 because δf is already of order O(E).

This term represents the so-called drift term. The right hand side of the Boltzmann
equation is the collision integral, which for impurity scattering acquires the form
(cf. Eq. (6.23) in the lecture notes)(

∂f(k)

∂t

)
coll

= −
∫

d2k′

(2π)2
W (k,k′)(f(k)− f(k′))

= −
∫

d2k′

(2π)2
W0 δ(εk − εk′) (f0(k) + δf(k)− f0(k′)− δf(k′))

= −
∫

dθ′ dk′ k′

(2π)2
W0

m

~2k
δ(k − k′) (f0(k) + δf(k)− f0(k′)− δf(k′))

= −m
~2

∫
dθ′

(2π)2
W0 [δf(k, θ)− δf(k, θ′)]. (5)

1Note that the potential only depends on the difference between k and k′ due to the homogeneity of
the system.
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The LHS can be written as

∇kf0 · (eE/~) =
~e
m

E · k∂f0

∂εk
=

~eEk
m

∂f0

∂εk
cos θ, (6)

where θ is the angle between the k and the electric field, which points into the
x-axis.

Taking (6) and (5) together we arrive at

~eEk
m

∂f0

∂εk
f0 cos θ = −

∫
dθ′W̃0[δf(k, θ)− δf(k, θ′)], (7)

where W̃0 = mW0/(2π~)2. This equation can be considered for every k indepen-
dently.

c) As the left hand and right hand side of Eq. (7) for every fixed k depend only on θ
which is 2π-periodic, we expand both sides in terms of Fourier modes as given in
the exercise sheet.

We start with the Boltzmann equation,∑
l

dl e
ilθ = −

∫
dθ′W̃0

(∑
l

fle
ilθ −

∑
l

fle
ilθ′

)
, (8)

which we project onto the m-th Fourier mode with multiplication of both sides with
exp(−imθ) and integration over θ∫

dθe−imθ
∑
l

dl e
ilθ = −

∫
dθe−imθ

∫
dθ′W̃0

(∑
l

fle
ilθ −

∑
l

fle
ilθ′

)
. (9)

This equation can be easily evaluated by using the relation∫
dθeinθ = 2πδn,0, (10)

and leaves us with

2πdm = −W̃0

∑
l

∫
dθdθ′

(
e−imθeilθ − e−imθeilθ′

)
fl

= −(2π)2W̃0

∑
l

(δm,l − δm,0δl,0)fl. (11)

With the expression (11) we have reduced the problem of finding a solution to the
Boltzmann equation to solving a system of linear equations. In general, the system
of equations is infinitely large, but often this does not prevent one from finding an
exact solution. In our case, relating the equation (11) to the matrix equation on the
exercise sheet, we find that the matrix L has the following diagonal form

Lm,n = −2πW̃0



. . .

1
. . .

1
0

1
. . .

1
. . .


. (12)
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d) We have reduced the problem to a simple matrix equation dl = Ll,mfm, where sum-
mation over dummy indices is implied. By symmetry, the matrix must be symmetric
and thus diagonal. The eigenvectors of L represent the Fourier decomposition of
eigenfunctions of the collision operator and the eigenvalues represent inverse re-
laxation times. A vanishing eigenvalue represents and infinite relaxation time, the
corresponding eigenfunction defines then a conserved quantity. Any quantity that
cannot be changed due to collisions will be preserved. In our case, we have only one
conserved quantity left, because the energy, that can also not be changed within
collisions has explicitly been projected out. This conserved quantity, which as we
can see from (12), corresponds to the zeroth Fourier component. This constant shift
of δf corresponds to the total particle number of the system and can of course not
be changed during collisions.

e) From the expression for ∇kf0 ·(eE/~) given in Eq. 6, we can directly find its Fourier
decomposition as

∑
l

dl e
ilθ =

e~kE
2m

∂f0

∂εk
(eiθ + e−iθ) ⇒ dl =


e~kE
2m

∂f0

∂εk
, l = ±1

0 , else

. (13)

Because the matrix L is diagonal, it is trivial to find a solution to the Boltzmann
equation,

fl =

−
e~kE
2m

1

2πW̃0

∂f0

∂εk
, l = ±1

0 , else

. (14)

Comparing our result to the single relaxation time approximation, we have for the
collision integral (

∂f

∂t

)
coll

= −(2πW̃0)δf = −(2πW̃0)(f − f0), (15)

which we can directly relate to the single relaxation time approximation, Eq. (1)
on the exercise sheet by identifying the relaxation time τ with the value 1/(2πW̃0).

Exercise 11.2 Reflectivity of Simple Metals and Semiconductors

Using the relation between conductivity and dielectric function we obtain

ε(ω) = ε∞ +
i

ωε0
σ(ω) = ε∞ −

ω2
pτ

2

1 + ω2τ 2
+ i

ω2
pτ/ω

1 + ω2τ 2
. (16)

Parametrizing the complex index of refraction by

N(ω) =
√
ε(ω) = n(ω) + ik(ω), (17)

we find with the abbreviations

εr(ω) = ε∞ −
ω2
pτ

2

1 + ω2τ 2

εi(ω) =
ω2
pτ/ω

1 + ω2τ 2
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Figure 1: Frequency dependence of the reflectivity. Left: ε∞ = 1, Right: ε∞ = 20.

that

n(ω) =
1√
2

√
εr(ω) +

√
ε2r(ω) + ε2i (ω)

k(ω) =
1√
2

√
−εr(ω) +

√
ε2r(ω) + ε2i (ω).

The reflectivity is then given by the standard formula

R(ω) =
(n(ω)− 1)2 + k2(ω)

(n(ω) + 1)2 + k2(ω)
. (18)

Plots of the reflectivity for different values of ε∞ and τωp are shown in fig. 1.
The reason why ε∞ is usually larger in semiconductors than in metals relates to the differ-
ent electron densities in these two classes of materials: In the formulae above, everything
is measured in terms of ωp ∝

√
nc, where nc is the density of charge carriers. For metals,

nc ∼ 1022cm−3, whereas for doped semiconductors, nc ∼ 1013 − 1018cm−3. Correspond-
ingly, ~ωp ∼ 10eV for metals and ~ωp . 100meV for heavily doped semiconductors. The
simple solution to why ε∞ is higher in semiconductors is that the ’value of ∞’ depends
on the energy range one is interested in, so that also ε∞ varies, as it incorporates the
response of all excitations with energies higher than the energy range under investigation.
For higher frequency cutoff there is a smaller number of excitations above this cutoff, so
that ε∞ decreases with increasing ωp (as ωcutoff ∼ ωp) and ultimately drops to unity for
very large cutoff.
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