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Exercise 6.1 Lindhard function

At T = 0 the Fermi-Dirac distribution function nF (εk) reduces to θ(εF −εk). As usual, we
go from the discrete summation to a d-dimensional integral. Then, the static Lindhard
function is given by

χ0(q) ≡ χ0(q, ω = 0) =
1

Ω

∑
k

nF (εk+q)− nF (εk)

εk+q − εk − i~η
=

1

(2π)d

∫
ddk

θ(εF − εk+q)− θ(εF − εk)

εk+q − εk − i~η
(1)

with the Fermi energy εF and the Heaviside step function

θ(x) =

{
1 , x ≥ 0

0 , x < 0
. (2)

Next we split the integral and perform a change of variables in the second integral
(k→ k − q) such that

χ0(q) = − 1

(2π)d

∫
ddk θ(εF − εk)

(
1

εk+q − εk − i~η
− 1

εk − εk−q − i~η

)
. (3)

The dispersion relation for free electrons is given by εk = ~2k2/2m. We can therefore
define the Fermi wave vector kF =

√
2mεF/~ and the integration can be simplified further

to

χ0(q) = − 1

(2π)d
2m

~2

∫
|k|<kF

ddk

(
1

q(q + 2k)− i~′η
+

1

q(q − 2k) + i~′η

)
. (4)

where we introduced the abbreviation ~′ = 2m/~.

i) In the 1 dimensional case the integral is then simply

χ0(q) = − 1

2π

2m

~2

kF∫
−kF

dk

(
1

q(q + 2k)− i~′η
+

1

q(q − 2k) + i~′η

)
. (5)

We remark that for |q| < 2kF there is a singular point in the integral which is ’cured’
by η meaning that in the limit η → 0 we have to calculate the principle value since
limη→0(z − iη)−1 = P (1/z) + iπδ(z).

For instance, let’s consider the integral

kF∫
−kF

dk

q + 2k
(6)

for |q| < 2kF . There is a singularity at k = −q/2 such that the integral is not well
defined from a ’mathematical’ point of view. However, the principle value

P
kF∫

−kF

dk

q + 2k
= lim

δ→0

 −q/2−δ∫
−kF

dk

q + 2k
+

kF∫
−q/2+δ

dk

q + 2k

 (7)
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is well defined because there are no singularities within the integrals. We calculate
then

P
kF∫

−kF

dk

q + 2k
= lim

δ→0

(
1

2
log |q + 2k|

∣∣∣∣−q/2−δ
−kF

+
1

2
log |q + 2k|

∣∣∣∣kF
−q/2+δ

)
(8)

= lim
δ→0

(
1

2
log

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣+
1

2
log

∣∣∣∣−δδ
∣∣∣∣) =

1

2
log

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣ . (9)

Therefore we can work with the anti-derivatives as if there are no singular points

Re(χ0(q)) = − m

π~2q
P

kF∫
−kF

dk

(
1

q + 2k
+

1

q − 2k

)
= − m

π~2q

(
1

2
log

∣∣∣∣q + 2k

q − 2k

∣∣∣∣)∣∣∣∣kF
−kF
(10)

= − m

π~2q
log

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣ . (11)

ii) In the three dimensional case we assume q = q ez since the system is isotropic. The
integral then reduces to

χ0(q) = − 1

(2π)3
2m

~2

∫
|k|<kF

d3k

(
1

q(q + 2kz)− i~′η
+

1

q(q − 2kz) + i~′η

)
. (12)

After a change to cylindrical coordinates (kx = r cos(φ), ky = r sin(φ), kz = kz with
k2 = r2 + k2z < k2F ) we get

− m

4π3~2

kF∫
−kF

dkz

√
k2F−k2z∫
0

dr r

2π∫
0

dφ

(
1

q(q + 2kz)− i~′η
+

1

q(q − 2kz) + i~′η

)
. (13)

The integration over r and φ are trivial and we find similarly as in (i) the real part
of χ0(q)

Re(χ0(q)) = − m

2π2~2q
P

kF∫
−kF

dkz
k2F − k2z

2

(
1

q + 2kz
+

1

q − 2kz

)
. (14)

Using partial fraction decomposition one can split the integrand into pieces which
can then be integrated elementarily. After a straight-forward calculation we find∫

dkz k
2
z

(
1

q + 2kz
+

1

q − 2kz

)
= 2q

[
−kz

4
+

q

16
log

∣∣∣∣q + 2kz
q − 2kz

∣∣∣∣] (15)

and we finally obtain

Re(χ0(q)) = − mkF
4π2~2

[
1− q

4kF

(
1− 4k2F

q2

)
log

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣] . (16)

Note that in the both cases the imaginary part of χ0(q) vanishes.
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Exercise 6.2 Zero-sound excitations

a) Each infinitesimal volume element δn(r, t)d3r contributes to the potential at r′

with Vlocal(r
′ − r). Therefore the potential Vind(r′) which is induced by a particle

distribution δn(r, t) is

Vind(r′, t) =

∫
d3r Vlocal(r

′ − r)δn(r, t). (17)

As we know, a convolution in real space corresponds to a simple multiplication in
(k, ω)-space and we get

Vind(k, ω) = Vlocal(k, ω) δn(k, ω) = U δn(k, ω) (18)

where we used that the Fourier transform of the δ-function is 1.

b) As in the lecture notes we apply an external potential Va(q, ω) to the system and cal-
culate the resulting potential V (q, ω) which consists of both, the external potential
Va and the induced potential Vind. With the induced particle distribution

δn(q, ω) = χ0(q, ω) V (q, ω) (19)

and the potential induced by δn

Vind = Uδn(q, ω) (20)

we find with V = Vind + Va

V (q, ω) =
Va(q, ω)

1− Uχ0(q, ω)
≡ Va(q, ω)

ε(q, ω)
(21)

where ε(q, ω) = 1 − Uχ0(q, ω) is the dynamical dielectric function. The response
function χ(q, ω) is therefore

χ(q, ω) =
χ0(q, ω)

ε(q, ω)
=

χ0(q, ω)

1− Uχ0(q, ω)
. (22)

Next we expand the dispersion relation εk+q about q = 0 and calculate χ0(q, ω) in
lowest order of |q| (see Eq. (3.66) in section 3.2.2 for the details) which yields

χ0(q, ω) ≈ k3F q
2

3π2m(ω + iη)2
= α2 q2

(ω + iη)2
(23)

with the abbreviation α =
√
k3F/(3π

2m) and q = |q|. Then we put this expression
in Eq. (22) and obtain

χ(q, ω) =
α2q2

(ω + iη)2 − Uα2q2
=

αq

2
√
U

(
1

ω + iη −
√
Uαq

− 1

ω + iη +
√
Uαq

)
.

(24)
Splitting the response function into real and imaginary part by using the identity
limη→0(z − iη)−1 = P (1/z) + iπδ(z) we find that the imaginary part is given by

Im(χ(q, ω)) ∼
(
δ(ω −

√
Uαq)− δ(ω +

√
Uαq)

)
. (25)

The excitation modes are therefore

ωq =
√
Uα|q| =

√
k3FU

3π2m
|q|. (26)

In contrast to the Coulomb potential, the local potential leads to plasmon excitations
with a linear dispersion relation which vanishes at q = 0.
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c) If the dispersion relation of plasmons lies in the region of particle-hole excitations,
it will be damped and the plasmon excitation will have only a short lifetime. Thus,
it is favourable for the plasmons to have a dispersion relation which is outside of
the particle-hole continuum. Since both, the dispersion relation of plasmons and
the upper boundary line for particle-hole excitations, goes linearly to zero as q → 0
the plasmon excitation is stable if the slope of the plasmon dispersion is larger then
the slope of the boundary line. Therefore we find the condition√

k3FU

3π2m
> vF =

~kF
m

(27)

and finally

U > Uc =
3π2~2

mkF
. (28)
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