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Exercise 13.1 Critical temperature in the Stoner model

In the lecture, it was shown that the critical temperatures obeys the equation

kBTc =

√
6

πΛ1(εF )

√
1− 2

UN(εF )
, (1)

with

Λ1(εF )2 =
(N ′(εF )

N(εF )

)2
− N ′′(εF )

N(εF )
. (2)

We therefore first need to calculate the densities of states and then use eq. (1) to calculate
Tc for different chemical potentials µ.

• εk = ε0 ± ~2k2

2m
: The density of states is given by

N(ε) =
(2m)3/2

~3π2

√∓ε0 ± ε. (3)

Therefore, Λ1(εF ) is given by

Λ1(εF )2 =
(N ′(εF )

N(εF )

)2
− N ′′(εF )

N(εF )
=

1

2(∓ε0 ± εF )2
. (4)

The equation for the critical temperature now reads

kBTc =
2
√

3

π
|ε0 − εF |

√
1− 2π2~3

(2m)3/2U
√
|ε0 − εF |

. (5)

Introducing the energy scale

EU =
π4~6

((2m)3U2
, (6)

note that U has dimension (energy× length3), we can expressN(εF )U =
√
|εF − ε0|/EU

and

kBTc
EU

=
2
√

3

π
(|εF − ε0|/EU)

√
1− 2√

|εF − ε0|/EU

(7)

which is plotted in Fig. 1.

• For the one dimensional case with linear dispersion we simply get a constant density
of states. Therefore, Λ1 vanishes and according to eq. (1) we would expect an infinite
Tc, at least if the Stoner criterion is fulfilled.
However, since we divided by zero, we should be more careful. Looking at the
derivation of eq. (1) we see that we actually started with an expression for the
magnetization which read (cf. eq. (7.15) of the script)

m = −1

2

∑
s

∫
dε sN(ε− Un0

2
− sUm

2
)f(ε) (8)

which for a constant density of states just vanishes. We therefore have no ferromag-
netism at all and thus no critical temperature Tc.

1



(ǫF − ǫ0)/EU

N(ǫF )U

kBTc/EUkBTc/EU

012
345
67

-10 5-5 100
Figure 1: Critical Temperature and the density of states (dashed line) as a function of the
Fermi energy. Note that the magnetization becomes non-zero (the critical temperature
becomes finite) when N(εF )U > 2.

Exercise 13.2 Stoner instability

The total energy of the system at T = 0 is given as

Etot = 〈ΨG|HMF|ΨG〉 (9)

with |ΨG〉 the ground state of the system, given by a filled Fermi sea up to energies εF↑(↓)
for electrons with spin up (down).
We can thus write the energy as

Etot =
1

Ω

∑
s

∑
|k|<kFs

(εk + Un−s)− Un↑n↓

=
1

(2π)3

∑
s

∫
|k|<kFs

d3k(εk + Un−s)− Un↑n↓

=

[(∫ kF↑

0

+

∫ kF↓

0

)
4πk2dk

(2π)3
~2k2

2m

]
+ Un↑n↓ (10)

=
~2

2m
22/3(3π2)2/3

3

5
(n

5/3
↑ + n

5/3
↓ ) + Un↑n↓ (11)

where n↑(↓) is the density of electrons with up (down) spin (here, we have made use of
the following expression, i.e. n↑ = k3F↑

/(6π2) and n↓ = k3F↓
/(6π2)). We now express these

densities with the relative number of electrons with up (down) spin,

n↑(↓) =
N↑(↓)
Ne

Ne

N
=

1

2
(1± x)n. (12)

Here, N is the total number of sites, Ne is the total number of electrons and N↑(↓) is the
total number of electrons with up (down) spin.
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Introducing this into eq. (11) we find

Etot =
~2

4m
(3π2)2/3

3

5
((1 + x)5/3 + (1− x)5/3)n5/3 +

U

4
(1− x2)n2. (13)

The condition for a minimum of the total energy is found by differentiating eq. (13) with
respect to x,

2Ux =
~2(3π2)2/3

mn1/3
((1 + x)2/3 − (1− x)2/3) (14)

We can now use the expression for the density of states, N(εF ) = 3n1/3m/(~2(3π2)2/3), to
find

UN(εF ) =
3

2x
((1 + x)2/3 − (1− x)2/3). (15)

This equation has only non-vanishing solutions for UN(εF ) > 2 which can be seen by
plotting both the right hand side of Eq. (15) (see Fig. 2(a)) and we can find the solutions
for x numerical, see Fig. 2(b). For N(εF )U > 3/21/3, the system is completely polarized
and x = ±1. For N(εF )U < 2, the system is unpolarized and x = 0 (this solution is
absent in Eq. (15) as we divided by x to obtain this equation).
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Figure 2: Graphical solution of Eq. (15): (a) The right hand side is larger than 2, therefore
the first non-vanishing solution appears as soon as UN(εF ) > 2. (b) As long as UN(εF ) <
2, the system is in a paramagnetic state (I). With increasing UN(εF ), the polarization
increases as well (weakly polarized ferromagnetic state (II), until it reaches its maximum
value of ±1 at UN(εF ) = 3/21/3 and we have a completely polarized ferromagnetic state
(III).
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