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Exercise 6.1 Lindhard function

At T' = 0 the Fermi-Dirac distribution function ng(ex) reduces to 6(ep —€g). As usual, we
go from the discrete summation to a d-dimensional integral. Then, the static Lindhard
function is given by
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with the Fermi energy er and the Heaviside step function
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Next we split the integral and perform a change of variables in the second integral
(k — k — q) such that
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The dispersion relation for free electrons is given by €, = h2k? /2m. We can therefore
define the Fermi wave vector kp = /2mep/h and the integration can be simplified further
to
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where we introduced the abbreviation A’ = 2m/h.

i) In the 1 dimensional case the integral is then simply
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We remark that for |g| < 2kp there is a singular point in the integral which is ’cured’
by n meaning that in the limit 7 — 0 we have to calculate the principle value since

lim, o(z —in)~t =P (1/z) + imd(2).
For instance, let’s consider the integral
kp

dk
/ q+ 2k (6)

,]gF

for |g| < 2kp. There is a singularity at k = —q/2 such that the integral is not well
defined from a 'mathematical’ point of view. However, the principle value
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is well defined because there are no singularities within the integrals. We calculate

then
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Therefore we can work with the anti-derivatives as if there are no singular points

kp
- | 1 m (1 Jg+2k[\|T
= —— dk =—— [z 1
Re(xo(q)) whqu / <q+2k: + q—ij) mh%q (2 Og'q—%D (_,2)
—hFE
m q+ 2kp
_ . 11
wh2q ©8 q— 2kp .

ii) In the three dimensional case we assume q = q e, since the system is isotropic. The
integral then reduces to
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After a change to cylindrical coordinates (k, = 7 cos(¢), k, = rsin(¢), k, = k, with
k* =r? + k? < k%) we get
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The integration over r and ¢ are trivial and we find similarly as in (i) the real part
of xo(q)
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Using partial fraction decomposition one can split the integrand into pieces which
can then be integrated elementarily. After a straight-forward calculation we find
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and we finally obtain
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Note that in the both cases the imaginary part of yo(q) vanishes.



Exercise 6.2 Zero-sound excitations

a)

Each infinitesimal volume element on(r,t)d®r contributes to the potential at 7’
with Vipcal(7' — 7). Therefore the potential Vi q(7') which is induced by a particle
distribution dn(r,t) is

Via (7', 1) = /dgr Vioeal(T" — 7)on(r, t). (17)

As we know, a convolution in real space corresponds to a simple multiplication in
(k,w)-space and we get
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where we used that the Fourier transform of the §-function is 1.

As in the lecture notes we apply an external potential V,(q,w) to the system and cal-
culate the resulting potential V' (q,w) which consists of both, the external potential
V, and the induced potential V;,q. With the induced particle distribution
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and the potential induced by on
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where €(q,w) = 1 — Uxo(q,w) is the dynamical dielectric function. The response
function x(q,w) is therefore
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Next we expand the dispersion relation €4 about ¢ = 0 and calculate x(q,w) in
lowest order of |q| (see Eq. (3.66) in section 3.2.2 for the details) which yields
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with the abbreviation o = \/k%./(37%m) and ¢ = |q|. Then we put this expression
in Eq. (22) and obtain
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Splitting the response function into real and imaginary part by using the identity
lim, o(z —in)~' =P (1/z) + iwd(z) we find that the imaginary part is given by
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The excitation modes are therefore
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In contrast to the Coulomb potential, the local potential leads to plasmon excitations
with a linear dispersion relation which vanishes at g = 0.
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c) If the dispersion relation of plasmons lies in the region of particle-hole excitations,
it will be damped and the plasmon excitation will have only a short lifetime. Thus,
it is favourable for the plasmons to have a dispersion relation which is outside of
the particle-hole continuum. Since both, the dispersion relation of plasmons and
the upper boundary line for particle-hole excitations, goes linearly to zero as ¢ — 0
the plasmon excitation is stable if the slope of the plasmon dispersion is larger then
the slope of the boundary line. Therefore we find the condition
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