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Exercise 4.1 One-dimensional model of a semiconductor

The Hamilton operator is H1 = H0 + V where

H0 = −t
∑
i

(
c†ici+1 + c†i+1ci

)
, (1)

V = v
∑
i

(−1)i c†ici. (2)

[a] Let us consider the case v = 0. We write

c†j =
1√
N

∑
k

eikjc†k, cj =
1√
N

∑
k

e−ikjck, (3)

where k ∈ [−π, π) and kN = 2πn, n ∈ Z. The above expression is plugged into
Eq. (1) and we obtain

H0 = − t

N

∑
k,k′,j

(
ei[kj−k

′(j+1)] + ei[k(j+1)−ik′j]
)
c†kck′ (4)

= −t
∑
k,k′

c†kck′
(
e−ik

′
+ eik

) 1

N

∑
j

ei(k−k
′)j

︸ ︷︷ ︸
δk,k′

=
∑
k

(−2t cos k)︸ ︷︷ ︸
εk

c†kck , (5)

where we have made use of the Bravais sum.1

Let us define the following one-particle state: |φk〉 = c†k|0〉 where |0〉 is the vacuum.
It fulfills

c†kck|φk〉 = c†kckc
†
k|0〉 = c†k(1− c

†
kck)|0〉 = c†k|0〉 = |φk〉, (6)

and consequently
H0|φk〉 = εk|φk〉. (7)

Therefore, |φk〉 is an eigenstate of the Hamilton operator. Similar procedure may
be performed also with any-particle states c†k1c

†
k2
. . . c†kn|0〉.

[b] Let’s consider now the case v 6= 0. Again, the expression (3) is plugged into V :

V = v
∑
k,k′

[ 1

N

∑
j

eiπj ei(k−k
′)j

︸ ︷︷ ︸
δk,k′+π

]
c†kck′ , (8)

where we have used identity (−1)j ≡ eiπj (for integer j). It follows that

H1 =
′∑

k∈[−π/2,π/2]

(
εk c
†
kck + εk+π c

†
k+πck+π + v c†kck+π + v c†k+πck

)
. (9)

1A more precise form of the Bravais sum is
∑

j e
i(k−k′)j = Nδk,k′+G, where G may be arbitrary

reciprocal vector (in our case G = 2nπ).
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From now on we will work only in the reduced Brillouin zone (k ∈ [−π/2, π/2]), for
which does stand the denotation

∑′. Note that

εk+π = −2t cos(k + π) = 2t cos k = −εk. (10)

Introducing

c̄k =

(
ck
ck+π

)
(11)

the Hamilton operator is written in matrix form

H1 =
∑
k

′
c̄†kĤ1c̄k, (12)

where

Ĥ1 =

(
εk v
v −εk

)
. (13)

We define new operators ak and bk according to

c̄k =

(
ck
ck+π

)
=

(
uk vk
vk −uk

)(
ak
bk

)
= Uᾱk, (14)

H1 =
∑
k

′
ᾱ†kU

†Ĥ1Uᾱk. (15)

We can choose U such that U †Ĥ1U is diagonal. The energies are obtained from the
secular equation

det

(
εk − λ v
v −εk − λ

)
= λ2 − ε2k − v2 = 0 (16)

which has the solutions

λ = ±
√
ε2k + v2 = ±Ek. (17)

Furthermore, one finds

uk =
v√

2Ek(Ek + εk)
, vk = −

√
Ek + εk

2Ek
. (18)

Finally, the Hamilton operator is written in the eigenbasis

H1 =
∑
k

′ (
−Ek a†kak + Ek b

†
kbk

)
. (19)

[c] The band structure of the alternating chain is shown in Fig. 1. The gap between
valence and conduction band is ∆ = 2E±π/2 = 2v. The ground state for N/2
electrons on the chain is given by

|Ω〉 =

π/2∏
k=−π/2

a†k|0〉. (20)

Compared to a) we now have one fully filled band with a finite gap for all kinds of
excitations.
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Figure 1: The two bands of the alternating chain.

Exercise 4.2 Coulomb interaction - excitons

We want to study the influence of the electron-electron interaction on the excitation
spectrum of the half-filled chain.

[a] In the following we show that the repulsive interaction between the electrons leads
to an attractive interaction between the electrons in the conduction band and the
holes in the valence band.

We consider the following repulsive interaction:

U = u
N∑
i=1

nini+1 = u

N/2∑
i=1

n2i(n2i−1 + n2i+1). (21)

We want to find a simple expression in terms of the operators ak and bk. We start
with the density operator nj = c†jcj.

n2j =
1

N

∑
k

∑
k′

ei(k−k
′)2j c†kck′

=
1

N

∑
k

′∑
k′

′
ei(k−k

′)2j(c†kck′ + c†kck′+π + c†k+πck′ + c†k+πck′+π)

=
1

N

∑
k

′∑
k′

′
ei(k−k

′)2j (c†k + c†k+π)︸ ︷︷ ︸
≈−
√

2b†k

(ck′ + ck′+π)︸ ︷︷ ︸
≈−
√

2bk′

≈ 2

N

∑
k

′∑
k′

′
ei(k−k

′)2j b†kbk′ . (22)

Here, we used that u±π/2 = −v±π/2 = 1/
√

2. Note that the above approximation
is only valid in the vicinity of k = ±π/2. However, for u � v, t this is the region
which is most affected by the interaction and the approximation is justified in this
limit. In a similar way one shows

n2j±1 ≈
2

N

∑
k

′∑
k′

′
ei(k−k

′)(2j±1) a†kak′ . (23)
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In the vicinity of the band gap, namely for k ≈ ±π/2, the ’a-particles’ live solely
on the odd lattice sites whereas the ’b-particles’ are exclusively on the even lattice
sites. In other words, the electrons near the Fermi surface (for v = 0) have optimally
arranged themselves to gain as much energy as possible from the potential V . This
means that if an electron-hole pair is created we find hat the electron will mainly
be on the even sites while the hole will be on the odd sites. This is in fact the
reason why we need a non-local interaction between the electrons (as modeled by
U) in order to have an attractive interaction between holes and electrons. A local
interaction (which anyway is not possible for spinless fermions) would not be able
to do this job.

Using Eqs. (22), (23) and (21) we obtain

U ≈ 4u

N2

∑
k1,...,k4

′
N/2∑
j=0

ei(k1−k2+k3−k4)2j (ei(k3−k4) + e−i(k3−k4))b†k1bk2a
†
k3
ak4 (24)

≈ 4u

N

∑
k1,...,k4

′
δk1+k3,k2+k4 cos(k3 − k4)b†k1bk2a

†
k3
ak4 . (25)

With the substitution

k1 → k′ + q k2 → k + q k3 → k k4 → k′ (26)

the constraint k1 + k3 = k2 + k4 is automatically fulfilled and we obtain

U ≈ −4u

N

∑
k,k′,q

′
cos(k − k′)ak+qb

†
kbk′a

†
k′+q +

�
���

��4u
∑
k

b†kbk (27)

as on the exercise sheet. The minus sign in the above equation stems from the
exchange of the fermionic operator a†k′+q with three fermionic operators. This minus
sign is very important since it yields an attraction between electrons and holes. In
addition, in Eq. (27) we dropped a term proportional to the total number of electrons
in the conduction band which is irrelevant for the following discussion.

[b] In the following all summations run over the reduced Brillouin zone. The Hamilton
operator H = H1 + U with the approximation (27) for U separately preserves the
number of electrons and holes and therefore we can use the following ansatz for the
wave function of the exciton:

|ψq〉 =
′∑
k

Aqkak+qb
†
k|Ω〉. (28)

Note that this ansatz yields exact eigenstates of H only in the case when U is
approximated according to Eq. (27). The exact U does not preserve the number of
electrons and holes separately and leads to a complicated many-body problem.

The coefficients Aqk and the excitation energy ωq of the exciton have to be determined
such that

(H̃1 + U)|ψq〉 = ωq|ψq〉 (29)

where H̃1 = H1−E0, meaning that energies are measured with respect to the ground
state energy E0. For this we need the action of U on an exciton state,

U |ψq〉 = −4u

N

′∑
k′

′∑
k′′

Aqk′ cos(k′ − k′′)ak′′+qb†k′′ |Ω〉, (30)
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and the action of H̃1,

H̃1|ψq〉 =
∑
k

′
Aqk(Ek + Ek+q)ak+qb

†
k|Ω〉. (31)

Consequently, the Eq.(29) written component by component has to hold

(Ek + Ek+q − ωq)Aqk =
4u

N

′∑
k′

Aqk′ cos(k′ − k) (32)

We assume that u� v, t. In this case the bound state will be strongly extended in
real space, meaning that Aqk is localized in k-space. Therefore, in Eq. (32) we can
put the cos-factor out of the sum and approximate it by 1.2 Then, dividing both
sides by (Ek + Ek+q − ωq) and summing over k yields

1

4u
=

1

N

′∑
k

1

Ek + Ek+q − ωq
. (36)

The solutions of this equation for q = 0 for a small chain (N = 8) are shown in
Fig. 2. For each 0 < u <∞ there is an exciton excitation with energy smaller then
the gap ∆. Now we have revealed a bound state called exciton.

[c] In the following we want to calculate the energy dispersion ωq of the excitons for
small q. For this we write the sum as an integral

1

4u
= I :=

1

2

1

N/2

′∑
k

1

Ek + Ek+q − ωq
=

1

2

1

π

∫ π/2

−π/2

dk

Ek + Ek+q − ωq
. (37)

For small u the integral has to become large. Since the exciton energy lies within
the gap the main contributions to the integral are from the vicinity of k = ±π/2.
We therefore expand the denominator around k = ±π/2 and for small q’s:

Ek + Ek+q ≈ 2v +
2t2

v

(
(k ∓ π

2
)2 + (k + q ∓ π

2
)2
)

︸ ︷︷ ︸
2(k ∓ π

2
+
q

2
)2 +

q2

2

(38)

2Note that setting the cos-factor to 1 does mean on-site Coulomb interaction instead of nearest-
neighbor interaction. The proper way how to solve the Eq. (32) is to use

cos(k − k′) = cos k cos k′ − sin k sin k′ , (33)

and write down two self-consistent equations for F q
1 ≡

∑′
k′ A

q
k′ cos k′ and F

q
2 ≡

∑′
k′ A

q
k′ sin k′ by dividing

Eq. (32) by (Ek + Ek+q − ωq), multiplying by cos k (or sin k) and subsequent summation over k:

F q
1 =

4u

N

′∑
k

F q
1 cos2 k + F q

2 cos k sin k

Ek + Ek+q − ωq
, (34)

F q
2 =

4u

N

′∑
k

F q
1 cos k sin k + F q

2 sin2 k

Ek + Ek+q − ωq
, (35)

and the non-trivial solution of this homogeneous set of equations exist only if the determinant does
vanish... As you see the approximation does greatly simplify the further analysis.
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Figure 2: Graphical solution of Eq. (36), for q = 0, v = 0.1 and N = 8. The circles
mark the solutions for 1/4u = 5 and the dashed lines denote the band edges. Note that
there is exactly one solution (red circle; corresponding to the exciton excitation) below
the particle-hole continuum (which is in this plot discrete due to finiteness of N).

So the denominator has minima 2v + t2q2/v at k = ±π/2− q/2. For small u, ωq is
only little less then the minimum and almost all the contributions come from the
vicinity of the minimum. Therefore, we introduce a cutoff Λ and write the integral
symmetrically around 0,

I ≈ 1

2π

∫ Λ

−Λ

dk

2v + t2q2

v
− ωq + 4t2k2

v

=
1

2π

√
v

4t2

∫ Λ̃

−Λ̃

dx

a2 + x2
, (39)

where we have defined a2 = 2v − ωq + t2q2/v. Finally, we obtain

I ≈ 1

2π

√
v

4t2
1

a
arctan

(x
a

)∣∣∣Λ̃
−Λ̃
≈
√

v

4t2
1

2a
. (40)

Here we let the cutoff to infinity. Solution ωq of Eq. (37) yields the dispersion

ωq = 2v − u2v

t2
+
t2

v2
q2 = 2v − u2v

t2
+

q2

2(2m∗)
(41)

where m∗ = v/(4t2) is the effective mass near the energy gap. Thus, the electron-
hole pair has twice the mass of a single electron or hole.

[d] To show how f(r − r′) is related to A0
k, we insert the Fourier expansion of

ak =
1

2L

∫ L

−L
dreikr a (r) , b†k =

1

2L

∫ L

−L
dr′ e−ikr

′
b†(r′) , (42)

into the continuous form of the exciton state (for now considering finite volume,
thus k = nπ/L),

|ψq=0〉 =
∑
k

A0
kakb

†
k|Ω〉 =

1

2L

∫ L

−L
dx dx′

1

2L

∑
k

A0
ke
ik(r−r′)

︸ ︷︷ ︸
f(r−r′)

a (r)b†(r′) . (43)
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Now we do a limit L→∞ to conclude that

f(ρ) =
1

2π

∫
R
dkA0

ke
ikρ . (44)

In order to evaluate f(ρ), we use eq. (32) (note that the right-hand-side is a con-
stant), so that A0

k ∝ (2Ek − ω0)−1; plugging into Eq. (44) yields to

f(ρ) ∝ m∗
∫ ∞
−∞

dk
eikρ

k2 +m∗ (2v − ω0)
; 2v − ω0 > 0 ; (45)

which can be evaluated using the method of residues. Note that f(ρ) is real due to
antisymmetry of the imaginary part of the integral. Moreover, f(ρ) is symmetric, as
f(−ρ) = f(ρ)∗ = f(ρ). For ρ > 0, the contour may be closed in the upper half of the
complex plane where there is a single simple pole located at k̃ = i

√
m∗ (2v − ω0),

f(ρ) ∝ m∗(2πi)
eik̃|ρ|

2k̃
∝ e−|ρ|

√
m∗(2v−ω0) , (46)

so that λ = [m∗ (2v − ω0)]−1/2.
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