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Exercise 9.1

We write the summation as a integral and use cylindrical coordinates along the kx direction

S(ω, q) =
1

(2π)3

∫ 2π

0

dφ

∫ ∞
0

dr r

∫ ∞
−∞

dk′x n0,k′(1− n0,k′+q) δ(εk′+q − εk − ~ω). (1)

Since the system of free electrons is isotropic we can choose q = (q, 0, 0) where we as-
sume q > 0. The factor n0,k′(1 − n0,k′+q) strongly reduces the volume in k-space which
contributes to the integral, see the shaded area in Fig. 1.
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Figure 1: The region in k-space which contributes to the integral.

Then, we want to write the δ-term in a more transparent way. We start with

εk′+q − εk′ =
~2

2m

(
(k′ + q)2 − k′2

)
=

~2

2m

(
(k′x + q)2 + r2 − (k′2x + r2)

)
=

~2

2m

(
2k′xq + q2

)
(2)

and find then

δ
(
εk′+q − εk′ − ~ω

)
= δ

(
~2

2m

(
2k′xq + q2

)
− ~ω

)
=

m

~2q
δ
(
k′x − k̄x

)
. (3)

With the initial condition 0 6 ~ω 6 ~2(2qkF − q2)/2m one can show that

k̄x =
1

2q~
(
2mω − ~q2

)
∈ [−q/2, kF − q] . (4)

Thus, it is sufficient to integrate only over this interval in kx-direction. In radial direction
we integrate from r =

√
k2F − (kx + q)2 up to r =

√
k2F − k2x and the integration over φ

is trivial. We obtain

S(ω, q) =
2π

(2π)3

∫ kF−q

−q/2
dk′x

∫ √k2F−k2x

√
k2F−(kx+q)2

dr r
m

~2q
δ
(
k′x − k̄x

)
(5)
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which results in

S(ω, q) =
m2ω

(2π)2~3q
=
mkF
π2~2︸ ︷︷ ︸
N(εF )

mω

4qkF~
=
N(εF )

4

ω

qvF
. (6)

Exercise 9.2 Uniaxial Compressibility

Since the spherical harmonic functions play an important role in this exercise, let us briefly
recapitulate some facts:

• We will need the two functions

Y00 =
1√
4π

, Y20 =

√
5

16π

(
3 cos2 θ − 1

)
. (7)

• There are different conventions of the spherical harmonic functions and their or-
thogonality relation. In our convention of the functions, the orthogonality relation
is ∫

dΩ Y ∗lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ (8)

where the integral goes over the whole sphere and dΩ = dθdφ sin θ.

• If k̂ and k̂
′
are the normalized vectors at (θ, φ) and (θ′, φ′) and Θ the angle between

k̂ and k̂
′
, then there exists the following relation

Pl(cos Θ) =
4π

2l + 1

l∑
m=−l

Ylm(θ, φ)Y ∗lm(θ′, φ′). (9)

Then, we first write the deformation of the Fermi surface as

kF (φ, θ) = k0F + γk0F [3 cos2 θ − 1] = k0F (1 + αY20(θ, φ)) = k0F (1 + δ) . (10)

where α = 4γ
√
π/5 and δ = δ(θ, φ) = αY20(θ, φ).

a) The change in volume enclosed by the Fermi surface is thus

V =

∫
dΩ

∫ kF (φ,θ)

0

k2dk =
(k0F )

3

3

∫
dΩ (1 + δ)3

=
(k0F )3

3

∫
dΩ
(

1 + 3α︸︷︷︸
∝Y00

Y20(θ, φ) +O(γ2)
)

=
4π

3
(k0F )3 +O(γ2). (11)

where the vanishing of the first order term follows directly from the orthogonality
of the spherical harmonics.

b) To calculate the uniaxial compressibility, we first need to calculate the difference of
the energy functional accounting for the deformed Fermi surface up to second order.
We start with the general expression

E − E0 =
∑
k,σ

(εσ(k)− µ) δnσ(k) +
1

2V

∑
k,k′

∑
σ,σ′

fσσ′(k,k′)δnσ(k)δnσ′(k′) (12)
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and find that δnσ(k) is given by

δnσ(k) =


1 , k0F 6 |k| < k0F (1 + δ) and δ > 0

−1 , k0F (1 + δ) 6 |k| < k0F and δ < 0

0 , else

. (13)

By replacing the summation over k by an integral, we can therefore write

E − E0 =
V

(2π)3

∑
σ

∫
dΩ

∫ k0F (1+δ)

k0F

dk k2 (εσ(k)− µ)

+
1

2

V

(2π)6

∑
σ,σ′

∫
dΩdΩ′

∫ k0F (1+δ)

k0F

dk

∫ k0F (1+δ′)

k0F

dk′ k2k′2fσσ′(k,k′)

(14)

where we wrote δ′ = δ(θ′, φ′).

Let us concentrate on the first term.

We introduce the dimensionless variable x = k/k0F and linearize

εσ(k)− µ ≈ k0F~2

m∗
(k − k0F ) =

(k0F )2~2

m∗
(x− 1) (15)

such that we are able to perform firstly the k-integration and secondly, the integra-
tion over the sphere

V

(2π)3

∑
σ

∫
dΩ (k0F )3

∫ 1+δ

1

dx x2
(k0F )2~2

m∗
(x− 1)

=
V

(2π)3
(k0F )5~2

m∗
1

2

∑
σ

∫
dΩ
(
δ2(φ, θ) +O(α3)

)
=

V

(2π)3
(k0F )5~2

m∗
α2 +O(α3) (16)

where we used the orthogonality relation.

For the second term we use analogously to the lecture notes

fσσ′(k,k′) ≈ fσσ′(k̂, k̂
′
) =

∑
l

(f sl + σσ′fal )Pl(cos Θ)

=
∑
l

(f sl + σσ′fal )
4π

2l + 1

l∑
m=−l

Y ∗lm(θ, φ)Ylm(θ′, φ′). (17)

The integration in k and k′ (x and x′) is easily computed such that the second term
is

V

2(2π)6

∑
l,m

∑
σσ′

(f sl + σσ′fal )
4π(k0F )6

2l + 1

∫
dΩdΩ′

x3

3

∣∣∣∣1+δ
1

x3

3

∣∣∣∣1+δ′
1

Y ∗lm(φ, θ)Ylm(φ′, θ′).

(18)
We keep terms only up to order α2 and sum over σ and σ′ which cancels fal out:

V

2(2π)6

∑
l,m

(4f sl )
4π(k0F )6

2l + 1

∫
dΩdΩ′

[
δ(φ, θ)δ(φ′, θ′) +O(α3)

]
Y ∗lm(φ, θ)Ylm(φ′, θ′).

(19)
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With ∫
dΩ δ(φ, θ)Ylm(θ, φ) = α δ2,lδ0,m (20)

we obtain for the second term

V

(2π)3
(k0F )5~2

m∗
m∗k0F
π2~2︸ ︷︷ ︸
N(εF )

f s2
5
α2 +O(α3) =

V

(2π)3
(k0F )5~2

m∗
F s
2

5
α2 +O(α3). (21)

Thus, neglecting higher order terms, the total change of energy is

E − E0 =
V

(2π)3
(k0F )5~2

m∗
α2

(
1 +

F s
2

5

)
=

V

(2π)3
(k0F )5~2

m∗
16πγ2

5

(
1 +

F s
2

5

)
. (22)

It is now straight forward to calculate the uniaxial compressibility

κu =
1

V

∂2E

∂P 2
z

=
1

V

1

P 2
0

∂2E

∂γ2
=

8

5π2

EF
P 2
0

(k0F )3(1 +
F s
2

5
) =

24

5
n
EF
P 2
0

(1 +
F s
2

5
). (23)

Here we have used n =
(k0F )3

3π2 .

Note: If the volume enclosed by the distorted Fermi surface is constant for any
external disturbance, the adding of the chemical potential µ is only a shift in the
energy and does not affect any response quantity (χ, κ, etc.). However, in our case
the volume is fixed only up to first order in α and the response κ is given by the
second derivative of the energy with respect to the parameter α. Thus, the adding
of µ directly changes the final result κ. Fortunately, the change of the volume in
order of α2 also influences the integral over εσ(k) in the order of α2.

A slightly more sophisticated calculation with a constant volume up to second order
in α requires the distortion

kF (θ, φ) = k0F

(
1− α2

4π

)
(1 + δ(θ, φ)) (24)

where the additional α2-term assures the consistency of the volume. Using this
distortion one is able to show, that the ’illness’ of the integral over εσ(k) is actually
cured by substracting µ and that the final result is correct.
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