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Exercise 12.1 Conductivity tensor

The conductivity tensor in the relaxation time approximation can be derived from Eq.
(6.26-27) in the lecture notes
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with vαk = ~−1∂kαεk. For a dispersion relation of the form
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(2)

the surfaces of constant energy are ellipsoids and thus we change to corresponding coor-
dinates,
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The conductivity tensor is thus
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with vα = ~kα/mα. If we now use the fact that∫
dΩvαvβ =

4π

3

2ε

mα

δαβ, (4)

we find for the static case (ω = 0)

σxx = − e2

3π2~3

√
8mymz

mx
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∂ε
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and analogously for σyy and σzz. For T = 0, this yields

σαβ =
e2nτ(εF )

mα

δαβ, (6)

where we have used that the density of the electrons is given as n =
√

8mxmymzε
3/2
F /(3π2~3).
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Exercise 12.2 Mean free path

In the lecture notes it is shown that

1

τ
∝ N(εF )nimp

Z2

k4TF

and ρ ∝ 1

nτ
(7)

such that

ρ ∝ N(εF )

k4TF

nimp

n
Z2. (8)

The first fraction only depends on the Fermi surface which is hardly affected by the
impurities and the second fraction does not change much because the doping increases
the number of free charge carriers only slightly (very small impurity density). Therefore
we can conclude that

ρ ∝ Z2. (9)

As it was mentioned in the hint we assume that the optimal electronic configuration of the
impurity atom valence shell is identical with the valence shell of the surrounding atoms.
In this spirit we define the effective charge of the impurity as the number of electrons
which have to be removed from the impurity in order to have the same valence shell
configuration as the surrounding atoms, because those electrons are fully delocalized and
can therefore no longer screen the nucleus of the impurity atom (apart from Thomas-Fermi
screening).
A look at the periodic table gives us the electronic configuration, e.g. copper has the
valence band configuration 4s1. By calculating the difference of the valence electrons
between copper and the impurity we find the following table:

Impurity Electronic configuration Eff. charge Z
Be 2s2 1
Mg 3s2 1
B 2s22p1 2
Al 3s23p1 2
In 5s25p1 2
Si 3s23p2 3
Ge 4s24p2 3
Sn 5s25p2 3
As 4s24p3 4
Sb 5s25p3 4

Table 1: Electronic configuration and the effective charge of the impurities.

Indeed, by comparing the table above with the table on the exercise sheet, we remark that
impurities with identical effective charges have similar residual resistivities in agreement
with our considerations.

Exercise 12.3 Magnetoresistance and Hall effect

a) The term in first order for the magnetic field vanishes since

e

~
(vk ×B)

∂f0(k)

∂k
= e(vk ×B) · vk

∂f0(εk)

∂εk
= 0. (10)
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Therefore, the magnetic field does not act as a source on the left hand side of Eq. (4)
on the exercise sheet.

b) If we consider a magnetic field of the form B = (0, 0, B) and an electric field of the
form E = (E, 0, 0), the linearized Boltzmann equation yields

−eEvx
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∂ε

= −g(k)

τ
− eB

~

(
vkx
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)
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If we now use the ansatz

g(k) = −∂f0
∂ε

(akx + bky) , (12)

then the bracket on the right-hand-side in Eq. (11) is given by
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Eq. (11) then yields
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]
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Since this has to be true for all values of kx and ky we find
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τ
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2
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ωcτ
2
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2
, (15)

where ωc = eB/m. The coefficients a and b may now be used to calculate σxx, σxy
and σxz with the last one obviously yielding zero; an example for σxx follows,
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The other components can be found by repeating the calculation with E pointing
in y- and z-direction. We find for the complete conductivity tensor

σ̂ =
ne2τ

m

 1
1+α2 − α

1+α2 0
α

1+α2
1

1+α2 0

0 0 1

 , (19)

where α = ωcτ . The resistivity tensor is obtained by simply inverting σ̂ and one
finds

ρ̂ =
m

ne2τ

 1 α 0
−α 1 0
0 0 1

 . (20)

We see immediately from Eq. (20) that the Hall resistance ρxy is independent of
τ and that the transverse resistance is independent of the magnetic field and thus
does not show a magnetoresistance.
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