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Exercise 7.1 Bound and Antibound States in One Dimension

Expressing the real-space operators ĉj through momentum-space operators ĉk via

ĉj =
1√
N

∑
k

eikj ĉk (1)

and obtain the Hamiltonian

H =
∑
k

(−2t cos k)ĉ†kĉk +
1

N

∑
k

∑
k′

(−∆t)(eik
′
+ e−ik)ĉ†kĉk′ . (2)

We make the most general Ansatz for a state in momentum-space

|Ψ〉 =
∑
q

Aq ĉ
†
q|0〉 (3)

This state should satisfy the Schrödinger equation

H|Ψ〉 = E|Ψ±〉. (4)

From this equation, we obtain∑
k

(−2t cos k)Akĉ
†
k|0〉+

1

N

∑
k

∑
q

(−∆t)Aq(e
iq + e−ik)ĉ†k|0〉 =

∑
k

EAkĉ
†
k|0〉. (5)

In order that |Ψ〉 is an eigenstate, the condition

1

N

∑
q

(−∆t)Aq(e
iq + e−ik) = (E + 2t cos k)Ak (6)

has to be fulfilled for all k, which can be rewritten as

(−∆t)

E + 2t cos k

1

N

∑
q

Aqe
iq +

(−∆t)e−ik

E + 2t cos k

1

N

∑
q

Aq = Ak. (7)

We once sum this equation over k and once multiply this equation by eik and obtain the
set of equations

1

N

∑
k

(−∆t)

E + 2t cos k

1

N

∑
q

Aqe
iq +

1

N

∑
k

(−∆t)e−ik

E + 2t cos k

1

N

∑
q

Aq =
1

N

∑
k

Ak (8)

1

N

∑
k

(−∆t)eik

E + 2t cos k

1

N

∑
q

Aqe
iq +

1

N

∑
k

(−∆t)

E + 2t cos k

1

N

∑
q

Aq =
1

N

∑
k

eikAk. (9)

By introducing c0 =
∑

k Ak and c1 =
∑

k Ake
ik, we can write this set of equations as a

matrix equation(
1− 1

N

∑
k

(−∆t)e−ik

E+2t cos k
− 1
N

∑
k

(−∆t)
E+2t cos k

− 1
N

∑
k

(−∆t)
E+2t cos k

1− 1
N

∑
k

(−∆t)eik

E+2t cos k

)(
c0

c1

)
=

(
0
0

)
. (10)
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As the sum runs in the range [−π, π] only the even part of the integrand survives and we
have a matrix equation of the form(

a b
b a

)(
c0

c1

)
=

(
0
0

)
(11)

with

a = 1− 1

N

∑
k

(−∆t) cos k

E + 2t cos k
, (12)

b = − 1

N

∑
k

(−∆t)

E + 2t cos k
. (13)

In order to have a solution, the determinant of the matrix above should vanish, i.e.
a2 − b2 = 0, from which follows that a = ±b. We now perform the continuum limit such
that

a = 1−
∫ π

−π

dk

2π

(−∆t) cos k

E + 2t cos k
, (14)

b = −
∫ π

−π

dk

2π

(−∆t)

E + 2t cos k
. (15)

and we obtain the condition

1 = (−∆t)

∫ π

−π

dk

2π

±1 + cos k

E + 2t cos k
(16)

For |E| > 2t, this integral can be calculated using the integral∫ π

0

dq

2π

1

x+ cos q
=

{
1

2
√
x2−1

x > 1

− 1
2
√
x2−1

x < −1
(17)

and we obtain for E > 2t

1 =
∆t

2t
(−1 +

√
E ∓ 2t

E ± 2t
) (18)

which has a solution only for the lower sign and we obtain

E = 2t+
∆t2

t+ ∆t
. (19)

In the same way, we find for E < −2t a solution

E = −2t− ∆t2

t+ ∆t
. (20)

Exercise 7.2 Peierls’ Instability in 1D

We set the lattice constant for the whole task to a = 1.
For the eigenstates of our system we first only consider the electronic part of the Hamil-
tonian,

Hel =
∑
i,s

(c†i+1scis + h.c.)(−t+ αδui). (21)
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We change to momentum space by introducing the corresponding electronic operators,

c†is =
1√
L

∑
k

e−ikric†ks. (22)

While the first part of the sum obviously yields

Hdiag =
∑
k,s

(−2t cos k)c†kscks, (23)

more care has to be taken for the calculation of the second term: by using

δui = u0 cos qri. (24)

we find

Hoffd =
αu0

2

∑
k

[
(ei(k+q) + e−ik)c†ksck+qs + (ei(k) + e−i(k+q))c†k+qs.cks

]
. (25)

a) We now want to consider the half filled case, i.e. n = 1. In this case, the Fermi
energy is exactly εF = 0 and we have a nesting vector q = π. This results in a
periodicity of twice the lattice constant, the unit cell is doubled and thus the first
Brillouin zone is folded back. We can thus write the Hamiltonian as

H =
∑
k,s

′
c†ksHkcks (26)

where

Hk =

(
−2t cos k −2iαu0 sin k

2iαu0 sin k 2t cos k

)
(27)

and the primed sum
∑′ only runs over the reduced Brillouin zone, k ∈ [−π

2
, π

2
].

We can now write the Hk in terms of Pauli spin-matrices,

Hk = σy2αu0 sin k − σz2t cos k. (28)

The diagonalization of this matrix thus corresponds to a rotation of the vector
(0, 2αu0 sin k,−2t cos k) around the x-axis. The angle of rotation is given by

ω(k) = − arctan(
αu0

t
tan(k)). (29)

We thus immediately find the eigenenergies which are just the length of the vector:

ξk± = ±2
√
t2 cos2 k + α2u2

0 sin2 k. (30)

With this trick, it is also straight forward to find the transformation matrix: Since
a rotation in the spin space is in general given by

Uω = e−iσ·ω = cos
ω

2
− iω̂ · σ sin

ω

2
(31)

with ω = |ω| and ω̂ = ω/ω, we find for our new operators(
bks−
bks+

)
=

(
cos ω

2
−i sin ω

2

−i sin ω
2

cos ω
2

)(
cks
ck+πs

)
. (32)

3



Eventually, we can now calculate the density of states using

k = arccos

(√
ξ2 − 4t2

4α2u2
0 − 4t2

)
(33)

which follows directly from eq. (30). Thus the density of states yields

ρ(ξ) = 2 · 2 L
2π

∣∣∣∣∂k∂ξ
∣∣∣∣ =

2L

π

∣∣∣∣∣ ξ√
(ξ2 − 4t2)(ξ2 − 4α2u2

0)

∣∣∣∣∣ (34)

with squareroot singularities at the band edges. The results of this part are sum-
marized in fig. 1.
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Figure 1: Combined plot of the dispersion and the density of states of the one-dimensional
chain with no fixed positions for the atoms. On the left side, the arrows indicate the
folding of the Brillouin zone. On the right side, one sees the square root singularities of
the density of states,typical for one-dimensional systems, occurring at the band edges.

b) To calculate the total energy we first again consider the electronic part: For T=0,
only the lower band is filled and thus the energy (per length) yields

Eel =
2

L

∑
k

′
ξk− =

1

π

∫ π/2

−π/2
ξk−dk (35)

= − 4

π

∫ π/2

0

√
t2 cos2 k + α2u2

0 sin2 kdk (36)

= −4t

π

∫ π/2

0

√
1− (1− α2u2

0

t2
) sin2 kdk (37)

= −4t

π
E

(
π

2
,

√
1− α2u2

0

t2

)
(38)

where the first factor of two comes from the spins and in the last line we have used
the elliptic function of the second kind as given on the exercise sheet.
For large λ the displacement of an atom costs a lot of energy and we only expect a
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very small u0 so that we can expand in k′ =
√

1− k2 = αu0/t. The total energy is
then

Etot ≈ −
4t

π
−
(

2α2

tπ

(
log

4t

αu0

− 1

2

)
− λ

2

)
u2

0. (39)

We see that for small enough u0 the expression in the bracket becomes positive and
the total energy is reduced with respect to the energy without any displacements.

c) We now want to calculate

(i) ρi =
∑

s〈c
†
iscis〉 = 2

L

∑
k,k′ e

−i(k−k′)ri〈c†ksck′s〉
(ii) ρ̃i =

∑
s〈c
†
isci+1s〉 = 2

L

∑
k,k′ e

−i(k−k′)rieik
′〈c†ksck′s〉.

where the first one is the average electron density per atom and the second one is a
measure for the electron density on the bond between i and i+ 1.
Before continuing we note that the ground state of the system is given in terms of
the new operators bkα and the only expectation values not vanishing are 〈b†ks−bks−〉.
Since the original operators are given as

cks = cos
ω(k)

2
bks− + i sin

ω(k)

2
bks+ (40)

ck+πs = i sin
ω(k)

2
bks− + cos

ω(k)

2
bks+, (41)

this means that the only non vanishing matrix elements in terms of the original
operators are

〈c†ksck′s〉 = cos2 ω(k)

2
δk,k′ (42)

〈c†ksck′+πs〉 = i sin
ω(k)

2
cos

ω(k)

2
δk,k′ (43)

〈c†k+πsck′+πs〉 = sin2 ω(k)

2
δk,k′ (44)

〈c†k+πsck′s〉 = −i sin
ω(k)

2
cos

ω(k)

2
δk,k′ (45)

(46)

We can thus write the density per site as

ρi =
2

L

∑
k,k′

e−i(k−k
′)ri〈c†ksck′s〉 (47)

=
2

L

∑
k

′
(

cos2 ω(k)

2
+ sin2 ω(k)

2

)
+ i sin

ω(k)

2
cos

ω(k)

2
(1− 1) (48)

=
2

L

∑
k

′
= 1 (49)

For the ’density per bond’ we can again split the sum into parts with equal momen-
tum and parts with momentum differing by π. For the first ones we find

ρ̃const
i =

2

L

∑
k

′(
eik〈c†kscks〉+ ei(k+π)〈c†k+πsck+πs〉

)
(50)

=
2

L

∑
k

′
eik
(

cos2 ω(k)

2
− sin2 ω(k)

2

)
(51)

=
2

L

∑
k

′(
cos k cosω(k) + i sin k cosω(k)

)
=

2

L

∑
k

′
cos k cosω(k) (52)
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In the last step we have used that cosω(k) is an even function in k (cf. eq. (29) and
thus sin k cosω(k) is an odd function,thus vanishing when summed over.
For the latter part we find

ρ̃osc
i =

2

L

∑
k

′(
eiπrieik〈c†k+πscks〉+ e−iπriei(k+π)〈c†ksck+πs〉

)
(53)

=
2

L

∑
k

′
eik cos

ω(k)

2
sin

ω(k)

2

(
e−iπri − eiπri

)
(54)

= −2 sin(πri)

L

∑
k

′(
i cos k sinω(k)− sin k sinω(k)

)
(55)

=
2 sin(πri)

L

∑
k

′
sin k sinω(k) (56)

Here, we used the fact that ω(k) is odd and hence is sinω(k).
We indeed see that the bond density is composed of a constant term and an oscil-
lating term. We can now analyze this density in the two limits:

– λ → ∞: In that case, the displacement of the atoms will go to zero, u0 → 0
and thus ω → 0, too. Consequenty, the oscillating term vanishes while the
constant term becomes,

ρ̃i =
1

π
. (57)

– λ→ 0: In this case, displacement of an atom does not cost any energy and the
total displacement of two atoms becomes u0 = min{ t

α
, 1}. For the case where

α ≥ t, this corresponds to a gap of 4t and the dispersion is completely flat, the
electrons are localized. In that case ω = k and the bond density is given as

ρ̃i = ρ̃const
i + ρ̃osc

i =
1

2
(1 + sin πri) (58)

which means that the bond charge is alternatively 0 or 1.
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