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Exercise 5.1 Graphene

We want to calculate the π-energy bands of graphene using the tight-binding method.
Those bonds are due to electrons in the 2pz orbitals. Graphene has two inequivalent
carbon atoms per unit cell, which we call A and B.

The primitive lattice vectors ai join atoms on the same sublattice (A or B), so that
the reference points of the unit cells (the A-atoms in figure 1) form a triangular lattice.
Setting the lattice constant a to unity they are given by
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The reciprocal lattice vectors ci can be found as usually by demanding that they satisfy

ci · aj = 2πδij. (2)

This leads to
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With the reciprocal lattice vectors the Brillouin zone can be constructed and is seen to be
a regular hexagon (figure 1). Note that after identifying points that differ by a reciprocal
lattice vector only two of the corners are inequivalent.

Next we find the general form of the tight-binding model for the bands originating in the
pz-orbitals when only nearest neighbor hopping is taken into account. The pz-orbitals are
symmetric under the rotations of the plane so that the hopping matrix elements do not
depend on the direction. Hence we have only one hopping parameter, which we denote
by t. Furthermore, every A-atom has neighbors in B only. The onsite terms have to be
the same on both sublattices, so that they can be absorbed into the chemical potential
(we work at fixed filling with two electrons per unit cell).
To describe the hopping terms we define the vectors
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Figure 1: Left: Primitive lattice vectors for the honeycomb lattice. The vectors join points
on one triangular sublattice. Right: Hexagonal Brillouin zone constructed from the reciprocal
lattice vectors c1 and c2.

that point from an A atom to its three nearest neighbors. Denoting the postion of the
i-th atom on sublattice A by Ra,i, the Hamiltonian is given by

H = t
∑
i

3∑
j=1

[
c† (Ra,i) c (Ra,i + bj) + h.c.

]
. (5)

Now we use the Fourier transform given on the exercise sheet,
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to find
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The dispersion is found by diagonalizing the 2× 2-matrix Hamiltonian which yields

εk = ± t
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ky
2

+ 2 cos ky. (8)

The two bands are shown in figure 2. With two electrons per unit cell the lower band is
completely filled whereas the upper band is empty, so that µ = 0.
Now we can find the position of the Fermi points displayed in figure 2 by solving

3∑
j=1

eik·bj = 0. (9)
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Figure 2: left: Dispersion of the two bands of graphene. At half-filling (one electron per pz-
orbital), the Fermi ’surface’ consists of two points at the two inequivalent corners of the Brillouin
zone. right: Dirac cone in the vicinity of the point k = (2π/

√
3, 2π/3)

Inserting the definition of bj in (4) and writing equations for the real and imaginary parts
separately we have

sin

(√
3

2
qx

)
= 0 and (10)

cos

(√
3

2
qx

)
sin
(qy

2

)
=
−1

2
, (11)

which has as solutions q1 =
(

2π√
3
, 2π

3

)
and q2 =

(
0, 4π

3

)
, i.e. the two inequivalent corners

of the Brillouin zone. Note that both bands touch at these points. Next we obtain the low
energy Hamiltonian by expanding (7) to linear order around the corners of the Brillouin
zone, so that

Heff ≈ −
3
√

3t

8π

∑
k

2∑
i=1

Ψ†i (k) (σ̂x qi · k + σ̂y (ε̂qi) · k) Ψi(k), (12)

where ε̂ is the antisymmetric tensor and σi are the Pauli matrices. The Ψi describe the
electrons at the Fermi point qi, and have two components for each i describing the upper
and the lower band. The momenta k are relative to the Fermi points (i.e. shifted by qi).
The corresponding low energy dispersion is E = ±vF |k|, which resembles the relativistic
energy-momentum relation E2 = m0c

4 + p2c2 for a massless particle and the speed of
light replaced by the Fermi velocity. In fact, (12) is equivalent to the Dirac equation in
(2 + 1)-dimensional spacetime. The Fermi sea below each Fermi point corresponds to
the Dirac sea (vacuum for anti-particles), and the two Fermi points correspond to the
two different chiralities of spin-1/2 particles in relativistic QFT. This fact allows studying
some of the more puzzling aspects of the Dirac equation (such as the Klein paradox, see
e.g. M. I. Katsnelson et al., Chiral tunnelling and the Klein paradox in graphene, Nature
Physics 2, 620 - 625 (2006)).
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Exercise 5.2 Specific Heat of a Semiconductor and a Metal

a) We assume that, for kBT � Eg, only the band edges are important and parametrize
the dispersion by effective masses,

εv(k) = −~2k2

2mv

, (13)

εc(k) = Eg +
~2k2

2mc

. (14)

It is a matter of convention to define the zero in energy to the upper band edge of
the valence band. Instead, we could have also measured the energy with respect to
the middle of the band gap.

The number of electrons must be equal to the number of holes. This enables us to
determine the chemical potential through

0 =

∫
BZ

d3k

4π2
{1− nF [εv(k)]} −

∫
BZ

d3k

4π2
nF [εc(k)] (15)

=

∫
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d3k
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{
1

e−[εv(k)−µ]/kBT + 1
− 1

e[εc(k)−µ]/kBT + 1

}
(16)

≈
∫
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d3k

4π2

{
e[εv(k)−µ]/kBT − e−[εc(k)−µ]/kBT

}
, (17)

where, in the last step, we have assumed µ� kBT and Eg − µ� kBT , which gives

1

eε/kBT + 1
≈ 1 + e−ε/kBT , (18)

with ε� kBT .

From the equation (17) we find

0 =
(2kBT )3/2

4π3~3

(∫
IR3

d3ye−y
2

){
m3/2
v e−µ/kBT −m3/2

c e(µ−Eg)/kBT
}
, (19)

where we have used the fact that the Gaussian integral converges very rapidly so
that we can extend the integral over the first Brillouin zone to an integral over IR3.

The first two factors in the last equation are strict positive, so the last factor must
vanish to fulfill the equation. Hence we find

µ =
Eg
2

+
3

4
kBT log

(
mv

mc

)
. (20)

For T = 0, the chemical potential is in the middle of the band gap.

We first calculate the number of excited electrons ne(T ), which is equal to the
number of holes, where we again can extend the region of integration from the first
Brillouin zone to the entire real space in order to perform Gaussian integration.

nh(T ) =

∫
BZ

d3k

4π3
{1− nF [εv(k)]} ≈

∫
BZ

d3k

4π3
e[εv(k)−µ]/kBT (21)

= e−µ/kBT
(
mvkBT

21/3π~3

)3/2

=

(
kBT

21/3π~3

)3/2

(mvmc)
3/4e−Eg/2kBT . (22)

4



In the last step, we have inserted µ from Eq. (20).

Next, we calculate the total energy of electrons and holes

Ev =

∫
BZ

d3k

4π3
[−εv(k)]{1− nF [εv(k)]} ≈

∫
BZ

d3k

4π3
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2mv
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3

2
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∫
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(
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Note that the energy of holes enters Eq. (23) with the negative value of the energy
of the electrons in the valence band, −εv(k).

In total, we have

E = n(T )

[
3

2
kBT +

Eg
2

]
, (25)

with the total number of excitations n(T ) = ne(T ) + nh(T ).

The specific heat is thus given by a ideal gas-like part plus a correction,

C =
3

2
n(T )kB +

[
3

2
kBT +

Eg
2

]
∂n(T )

∂T
. (26)

We see that the specific heat of a semiconductor is given by a contribution similar
to the specific heat of an ideal gas of excitations that are already present in the
system due to thermal excitation, plus an additional contribution originating from
the excitation of new particle hole pairs ∼ ∂n(T )

∂T
.

Given that
∂n(T )

∂T
=

(
3

2
+

Eg
2kBT

)
n(T )

T
, (27)

we can rewrite the specific heat as

C =

[
15

4
kB +

Eg
T

(
3

2
+

Eg
4kBT

)]
n(T ). (28)

Thus, the part of the specific heat originating from the excitation of additional
particles dominates over the ideal gas-like part for small temperatures!

b) The density of states for the dispersion relation εk including the spin degeneracy is
given by

D(ε) =
2

V

∑
k

δ(ε− εk) =
2

(2π)3

∫
d3k δ

(
ε− ~2k2

2m

)
(29)

where we went from a summation to an integral by approximating
∑

k ≈ V/(2π)3
∫
d3k.

We change to spherical coordinates and get that the density of states at the Fermi
energy EF is

D(EF ) =
8π

(2π)3

∫
dk k2δ

(
EF −

~2k2

2m

)
=

1

π2

∫
dk 2k︸ ︷︷ ︸
=d(k2)

k

2

δ (2mEF/~2 − k2)

~2/2m
(30)
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where we used that δ(αx) = δ(x)/|α|. Thus, we obtain

D(EF ) =
m

π2~2

√
2mEF
~2

=
mkF
π2~2

=
3

2

n

EF
(31)

where we used kF =
3
√

3π2n. At T = 0 the particle ensity and the energy density
can easily be calculated since only states below the Fermi sea are occupied, i.e.

n =
∑
εk<EF

1 u =
∑
εk<EF

εk (32)

but as we increase the temperature also states above the Fermi energy will be
occupied. The occupation number of the states in case of Fermions is described by
the Fermi-Dirac distribution function fFD(ε)

fFD(ε) =
1

e(ε−µ)/kBT + 1
. (33)

The particle density becomes then

n(µ, T ) =
∑
k

fFD(εk) =

∫
dε fFD(ε)D(ε) (34)

and the energy density is

u(µ, T ) =
∑
k

fFD(εk)εk =

∫
dε fFD(ε)D(ε)ε (35)

which can been verified when you substitute D(ε) using Eq. (29). In order to
calculate the specific heat we need the energy density as a function of n and T .
Therefore, the goal is to invert Eq. (34) which yields µ(n, T ) and to plug it in
u(µ, T ). However, this calculation can not be done analytically. That’s why we
expand first Eq. (35) and (34) for small T by using the Bohr-Sommerfeld expansion,
i.e. we have

n(µ, T ) ≈
µ∫

0

dε D(ε) +
π2

6
(kBT )2D′(µ) (36)

u(µ, T ) ≈
µ∫

0

dε D(ε)ε+
π2

6
(kBT )2 [µD′(µ) +D(µ)] . (37)

Since µ→ EF for T → 0, we approximate
∫ µ

0
h(ε)dε ≈

∫ EF

0
h(ε)dε+(µ−EF ) ·h(EF )

and find then

n(µ, T ) ≈
EF∫
0

dε D(ε) +

[
(µ− EF )D(EF ) +

π2

6
(kBT )2D′(EF )

]
(38)

u(µ, T ) ≈
EF∫
0

dε D(ε)ε+ EF

[
(µ− EF )D(EF ) +

π2

6
(kBT )2D′(EF )

]
+
π2

6
(kBT )2D(EF )

(39)
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where we neglected higher order contributions. If we fix the particle density, then
the expression in the brackets has to be constant as well. Thus, we find that

µ = EF −
π2

6
(kBT )2D

′(EF )

D(EF )
= EF

[
1− 1

3

(
πkBT

2EF

)2
]
. (40)

Combining Eq. (40) with Eq. (39) we can get rid of µ and obtain

u(n, T ) = u0 +
π2

6
(kBT )2D(EF ) (41)

with a temperature independent energy offset u0. Finally, the specific heat is given
by

cv =

(
∂u

∂T

)
n

=
π2

3
k2
BTD(EF ) =

π2

2

(
kBT

EF

)
nkB (42)

where we used Eq. (31).
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