
Solid State Theory

Solution Sheet 2
FS 12

Prof. M. Sigrist

Exercise 2.1 Energy bands of almost free electrons on the fcc lattice

The Bloch equation is written in Fourier space as [see Eq. (1.21) of lecture notes][
~2

2m
(~k + ~G)2 − εn,~k

]
c ~G +

∑
~G′

V ~G− ~G′c ~G′ = 0. (1)

For V ≡ 0 the dispersion along the ∆-line is shown in Fig. 1 for the few lowest bands.
The numbers indicate the degeneracy of the bands. The different lines stem from different
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Figure 1: The dispersion along the ∆-line for free electrons on a fcc lattice. The numbers
indicate the degeneracy of the eigenstates.

energy parabolas centered at different but equivalent points in reciprocal space. Figure 2
shows the part of the reciprocal lattice which is relevant for the lowest energy bands.

a) For V = 0 the second energy level, E0 = 3~2G2

2m
, is 8-fold degenerate. It stems from

parabolas centered at the 8 points connected to Γ by the following reciprocal lattice
vectors:

~G1 = G(1, 1, 1), ~G2 = G(−1, 1, 1),
~G3 = G(−1,−1, 1), ~G4 = G(1,−1, 1),
~G5 = G(1, 1,−1), ~G6 = G(−1, 1,−1),
~G7 = G(−1,−1,−1), ~G8 = G(1,−1,−1),

(2)

where G = 2π
a

. The eigenfunctions are given by

ψj(~r) = 〈~r|~Gj〉 =
ei
~Gj ·~r
√
V

(3)

and form an 8 dimensional Hilbertspace. The representation Γ of Oh on this sub-
space is defined as

Γ̂(g)|~Gj〉 = |g ~Gj〉 (4)
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Figure 2: Section of the reciprocal lattice. The length of the cube is 4π
a

.

where g ∈ Oh. It is easy to see that each element of the cubic point group simply
permutes the ~Gj’s. For example, a rotation by π/2 around the z-axis is represented
as

Rz
π/2 =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0


.

The character of this transformation is χΓ(Rz
π/2) = tr(Rz

π/2) = 0. Clearly, in order

to find all the characters of the representation Γ defined by Eq. (4) we don’t have

to compute all the matrices. Instead, we simply have to know how many of the ~Gi’s
are invariant under a certain element. For this purpose, it is sufficient to consider
one element of each conjugacy class. In the following, J will denote the inversion,
C3(8) the conjugacy class of rotations by 2π/3 around one of the diagonals of the
cube, C4(6) the conjugacy class of the rotations by π/2, C2(6) the conjugacy class of
rotations by π around an axis through the edges of the cube and C2

4(3) the conjugacy
class of the rotations by π around an axis through surface of the cube. (The number
in brackets denotes the number of elements in the corresponding conjugacy class.)
One finds the following group character

E C3(8) C2
4(3) C2(6) C4(6) J JC3(8) JC2

4(3) JC2(6) JC4(6)
χΓ 8 2 0 0 0 0 0 0 4 0

Using the orthogonality of the characters we can compute how many times the
irreducible representation Γ±i is contained in Γ:

nΓ±i
=
〈
χΓ, χΓ±i

〉
:=

1

|Oh|
∑
g∈Oh

χΓ(g)χΓ±i
(g) =

1

|Oh|
∑
Cn

χΓ(Cn)χΓ±i
(Cn) |Cn|
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where Cn denotes the conjugacy classes of Oh, |Cn| the order of the conjugacy class
(e.g. C3(8) has 8 elements) and |Oh| = 48 the order of the group. One computes

nΓ+
1

=
1

48
(8 + 2× 8 + 4× 6) = 1,

nΓ−1
=

1

48
(8 + 2× 8− 4× 6) = 0,

nΓ+
2

=
1

48
(8 + 2× 8− 4× 6) = 0,

nΓ−2
=

1

48
(8 + 2× 8 + 4× 6) = 1,

nΓ+
12

=
1

48
(2× 8− 2× 8) = 0,

nΓ−12
=

1

48
(2× 8− 2× 8) = 0,

nΓ+
15

=
1

48
(3× 8− 4× 6) = 0,

nΓ−15
=

1

48
(3× 8 + 4× 6) = 1,

nΓ+
25

=
1

48
(3× 8 + 4× 6) = 1,

nΓ−25
=

1

48
(3× 8− 4× 6) = 0.

Therefore,

Γ = Γ+
1 ⊕ Γ−2 ⊕ Γ−15 ⊕ Γ+

25. (5)

b) For V 6= 0 the wave functions ψj(~r) mix. We define the following quantities:

E0 = ~2
2m

3(2π
a

)2, u = V 4π
a

(
1 1 1

), v = V 4π
a

(
1 0 0

) and w = V 4π
a

(
1 1 0

).

Applying degenerate perturbation theory to Eq. (1) leads to the secular equation

det



E0 − ε v w v v w u w
v E0 − ε v w w v w u
w v E0 − ε v u w v w
v w v E0 − ε w u w v
v w u w E0 − ε v w v
w v w u v E0 − ε v w
u w v w w v E0 − ε v
w u w v v w v E0 − ε


= 0

which has to be solved for ε. By projecting suitable vectors onto the symmetry
subspaces found in a) one can systematically construct an eigenbasis and with it
find the energies.

However, for relatively small systems it is often possible to guess the correct eigen-
functions using some symmetry properties of the basis functions of the irreducible
representations. Since the physical eigenfunctions have to be periodic in real space
it is natural to use combinations of cos(Gx) and sin(Gx) etc. (Instead of the poly-
nomials given on page 15 of the lecture notes.)

1. The eigenfunction belonging to the subset Γ+
1 has to be totally symmetric

under all the operations. Therefore, e1 =
(

1 1 1 1 1 1 1 1
)

is an
eigenvector with energy ε1 = E0 +u+ 3v+ 3w. The physical eigenfunction can
be found as f1(~r) ∼

∑
j e

i ~Gj~r ∼ cos(Gx) cos(Gy) cos(Gz).
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2. The eigenfunction belonging to the subset Γ−2 has to be symmetric under inter-
change of x, y and z but has to change sign if an odd number of the coordinates
changes sign (see character table). The function f2(~r) ∼ sin(Gx) sin(Gy) sin(Gz)

fulfills these conditions. Writing it as a linear combination of the ei
~Gj ·~r we

find the eigenvector e2 =
(

1 −1 1 −1 −1 1 −1 1
)
. The energy is

ε2 = E0 − u− 3v + 3w

3. For Γ−15 we need three functions which are odd under the inversion operation
~r → −~r. We therefore need an odd number of sin’s. What is left are the combi-
nations f3(~r) ∼ sin(Gx) cos(Gy) cos(Gz), f4(~r) ∼ cos(Gx) sin(Gy) cos(Gz) and
f5(~r) ∼ cos(Gx) cos(Gy) sin(Gz). They correspond to the following vectors

e3 =
(

1 −1 −1 1 1 −1 −1 1
)

e4 =
(

1 1 −1 −1 1 1 −1 −1
)

e5 =
(

1 1 1 1 −1 −1 −1 −1
)

with energy ε3−5 = E0 − u+ v − w.

4. The eigenfunctions belonging to the subspace Γ+
25 are even under inversion

~r → −~r. Therefore, the functions f6(~r) ∼ cos(Gx) sin(Gy) sin(Gz), f7(~r) ∼
sin(Gx) cos(Gy) sin(Gz) and f8(~r) ∼ sin(Gx) sin(Gy) cos(Gz) are good candi-
dates. The corresponding vectors are

e6 =
(

1 1 −1 −1 −1 −1 1 1
)

e7 =
(

1 −1 −1 1 −1 1 1 −1
)

e8 =
(

1 −1 1 −1 1 −1 1 −1
)

and are indeed eigenvectors with energy ε6−8 = E0 + u− v − w.

c) On the ∆-line the number of symmetry operations which leave the ~k-vector invariant
is reduced. Only the rotations around the z-axis or the reflections on mirror planes
containing the z-axis leaves the ~k-vector invariant. The ”small group” is now C4v,
the symmetry group of a square. Under these reduced operations, the irreducible
representation of Oh will in general split into irreducible representations of C4v.

(i) Of course, the trivial representation of Oh changes to the trivial representation
of C4v: Γ+

1 7→ ∆1.

(ii) Under the operations of C4v the group character of Γ−2 is easily found using the
properties of the basis function f2(~r):

C4v E C2
4 C4 σv σd

χΓ−2
1 1 −1 −1 1

(6)

This is the character of ∆4 and therefore Γ−2 7→ ∆4.

(iii) Using the basis functions {f3(~r), f4(~r), f5(~r)} we find the following matrices
belonging to different conjugacy classes

C2
4([x̄ȳz]) =

 −1 0 0
0 −1 0
0 0 1

 , C4([yx̄z]) =

 0 1 0
−1 0 0
0 0 1

 ,

σv([x̄yz]) =

 −1 0 0
0 1 0
0 0 1

 , σd([yxz]) =

 0 1 0
1 0 0
0 0 1

 .

4



The group character is then found to be

C4v E C2
4 C4 σv σd

χΓ−4
3 −1 1 1 1

(7)

Again we use the orthogonality of the characters and compute

n∆1 =
1

8
(3− 1 + 2 + 2 + 2) = 1,

n∆2 =
1

8
(3− 1 + 2− 2− 2) = 0,

n∆3 =
1

8
(3− 1− 2 + 2− 2) = 0,

n∆4 =
1

8
(3− 1− 2− 2 + 2) = 0,

n∆5 =
1

8
(6 + 2) = 1.

Therefore, Γ−15 7→ ∆1 ⊕∆5.

(iv) For Γ+
25 we find in an analogous way

C4v E C2
4 C4 σv σd

χΓ+
25

3 −1 −1 −1 1
(8)

and therefore Γ+
5 7→ ∆4 ⊕∆5.

d) At the point X = 2π
a

(
0 0 1

)
the small group is again bigger. It contains all

the elements of Oh which map z to z or to −z. This group is called D4h. In order
to compute the lifting of the degeneracy of the lowest two levels we can simply
diagonalize the corresponding matrices.

Lowest level: The ~G-vectors entering the Bloch equation in lowest order in the
periodic potential are ~G0 = 0 and ~G9 = 2G(0, 0, 1). Furthermore, v = V ~G0− ~G9

enters
and we have to solve

det

( ~2G2

2m
− E v

v ~2G2

2m
− E

)
= 0.

The solution is E1 = E0 + v with e1 =

(
1
1

)
and E2 = E0 − v with

e2 =

(
1
−1

)
. The eigenfunctions are cosGz and sinGz, respectively. In the

lecture notes one finds the irreducible representations of D4h and it is clear that e1

corresponds to X+
1 and e2 to X−2 .

Second-lowest level: The ~G-vectors entering the Bloch equation in lowest order
in the periodic potential are ~G1 to ~G4 and we have to diagonalize the matrix

2~2G2

2m
v w v

v 2~2G2

2m
v w

w v 2~2G2

2m
v

v w v 2~2G2

2m

 .
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Here, v and w have the same meaning as above. From the symmetry of the matrix
it is clear that the eigenvectors are of the form (a, b, b, a) and (a, b,−b,−a). One
then finds

e1 =
(

1 1 1 1
)

and E1 = 2
~2G2

2m
+ 2v + w,

e2 =
(

1 1 −1 −1
)

and E2 = 2
~2G2

2m
− w,

e3 =
(

1 −1 −1 1
)

and E3 = 2
~2G2

2m
− w,

e4 =
(

1 −1 1 −1
)

and E4 = 2
~2G2

2m
− 2v + w.

Again, comparing the eigenfunctions with page 16 of the lecture notes we see that
e1 corresponds to X+

1 and e4 to X+
2 . Furthermore, e2 and e3 have to span the only

two-dimensional irreducible representation X−5 of D4h.

e) The dispersion along the ∆-line can now be sketched. Assuming that the only
non-vanishing components of the potential are u, v and w we can diagonalize the
matrices also for 0 < δ < 1 in order to get the dispersion along the ∆-line. The
result is shown in Fig. 3. One can see that the degeneracy is partially lifted when
going away from the Γ point. In general, other components of the potential will
lead to a hybridization of the bands at the places where they cross. In this respect,
the plot shown in Fig. 3 is incomplete.
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Figure 3: The dispersion along the ∆-line for almost free electrons on a fcc lattice for a
potential which is characterized by u, v and w.

Exercise 2.2 Lifting the degeneracy of the atomic states

The continuous group O(3) has irreducible representations in each odd dimension 2l+ 1.
The spherical harmonics Ylm(θ, φ), m = −l, . . . , l form a basis for the (2l+1) dimensional
representations. Within the group O(3), each element which describes a rotation by the
same angle belongs to the same conjugacy class. Therefore, we can focus on the rotations
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around the z-axis. A rotation around the z axis transforms the spherical harmonics
according to

Ylm(θ, φ) 7→ Ylm(θ, φ+ α) = eimαYlm(θ, φ).

The matrix for such a rotation is diagonal in the basis of the spherical harmonics:

D(l)(α) = diag(e−ilα, . . . , eilα). (9)

The trace is given by

χl(α) =
l∑

m=−l

eimα = 1 +
l∑

m=1

eimα +
l∑

m=1

e−imα

= 1 +
eiα − eiα(l+1)

1− eiα
+
e−iα − e−iα(l+1)

1− e−iα
= . . .

=
cos(αl)− cos [α(l + 1)]

1− cos(α)
=

sin
[
α(l + 1

2
)
]

sin(α
2
)

(10)

Now we assume that the atom belongs to a crystal with a crystal field of cubic symmetry.
Due to the reduced symmetry the representations will in general split into irreducible
representations of Oh.

p-orbitals, l=1 From Eq. (10) we obtaine for l = 1 the following group character

Oh E C3(8) C2
4(3) C2(6) C4(6)

χp 3 0 −1 −1 1

There is no need to worry about the inversion, because the parity of the spherical
harmonics is known to be (−1)l. Using the orthogonality relation we find

nΓ1 =
1

24
(3− 3− 6 + 6) = 0,

nΓ2 =
1

24
(3− 3 + 6− 6) = 0,

nΓ12 =
1

24
(6− 6) = 0,

nΓ15 =
1

24
(9 + 3 + 6 + 6) = 1,

nΓ25 =
1

24
(3− 3 + 6− 6) = 0.

Because the parity for l = 1 is −1 it follows that D1 7→ Γ−15.

d-orbitals, l=2 In the same way we find for l = 2

Oh E C3(8) C2
4(3) C2(6) C4(6)

χd 5 −1 1 1 −1

and

nΓ1 =
1

24
(5− 8 + 3 + 6− 6) = 0,

nΓ2 =
1

24
(5− 8 + 3− 6 + 6) = 0,

nΓ12 =
1

24
(10 + 8 + 6) = 1,

nΓ15 =
1

24
(15− 3− 6− 6) = 0,

nΓ25 =
1

24
(15− 3 + 6 + 6) = 1.
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Since the parity is now positive it follows that D2 7→ Γ+
12 ⊕ Γ+

25.

f-orbitals, l=3
Oh E C3(8) C2

4(3) C2(6) C4(6)
χf 7 1 −1 −1 −1

This yields

nΓ1 =
1

24
(7 + 8− 3− 6− 6) = 0,

nΓ2 =
1

24
(7 + 8− 3 + 6 + 6) = 1,

nΓ12 =
1

24
(14− 8− 6) = 0,

nΓ15 =
1

24
(21 + 3 + 6− 6) = 1,

nΓ25 =
1

24
(21 + 3− 6 + 6) = 1.

Because of the negative parity we obtain D3 7→ Γ−2 ⊕ Γ−15 ⊕ Γ−25.

Eigenfunctions of the d-orbitals We know that D2 7→ Γ+
12⊕Γ+

25 where Γ+
12, Γ+

25 are two
and three dimensional representations, respectively. It is also known that the spher-
ical harmonics for l = 2 form a basis for the harmonic, homogeneous polynomials
of order 2. Such a polynomial can be written as

P = c1xz + c2xy + c3yz + c4(x2 − z2) + c5(y2 − z2) (11)

where it is implicitly assumed that x2 + y2 + z2 = 1. Now let us consider a rotation
around the z axis by π/2. Thus, z 7→ z, x 7→ y and y 7→ −x. This yields

xz 7→ yz xy 7→ −xy yz 7→ −xz,
x2 7→ y2 y2 7→ x2 z2 7→ z2.

We see that the triple {xz, xy, yz} and the duple {x2 − z2, y2 − z2} do not mix under
this transformation. Therefore,
{xz, xy, yz} =

{
cosφ sin θ cos θ, cosφ sinφ sin2 θ, sinφ sin θ cos θ

}
is a basis for Γ+

25

and {x2 − z2, y2 − z2} = {cosφ2 sin θ2 − cos θ2, sinφ2 sin θ2 − cos θ2} is a basis for
Γ+

12. Often, the two dimensional subspace of Γ+
12 is called the eg subspace and the

three dimensional subspace of Γ+
25 is called the t2g subspace.
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