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Exercise 3.1 Two-orbital tight-binding model in 2d

a) The Bloch-waves constitute a basis of the (quasi-2-dimensional) Hilbert space of
the system. Since the Wannier functions are the “Fourier-transforms” of the Bloch-
waves, they, too, span the whole Hilbert space. Thus, we can write

H =
∑

α, α′, j, j′

〈wα(r− rj)|H|wα′(r− rj′)〉c†αjcα′j′ , (1)

which can be split in two terms as

H =
∑
α

Hα +
∑
α 6=α′

Hα,α′ . (2)

Considering only intra-band hopping terms and restricting the sum to nearest neigh-
bour terms, we obtain

Hα =
∑
j

εαc
†
αjcαj + (txαc

†
α(j+x̂)cαj + tyαc

†
α(j+ŷ)cαj + h.c.) (3)

with

εα =〈wα(r)|H|wα(r)〉, (4)

txα =〈wα(r− ax̂)|H|wα(r)〉, (5)

tyα =〈wα(r− aŷ)|H|wα(r)〉. (6)

Considering the overlap elements t
x/y
α for both bands, we recognize that

txpx = typy , (7)

txpy = typx (8)

due to the symmetry properties of the lattice system and the atomic orbitals.

b) If we approximate the Wannier functions (which are orthogonal to each other) by
atomic (hydrogen) states (which are not orthogonal to each other), we choose the
orientation of the orbitals such that

sign(wpx(r)) =

{
positive, x > 0,

negative, x < 0,
(9)

sign(wpy(r)) =

{
positive, y > 0,

negative, y < 0.
(10)
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Using (Hkin + V (r))wα(r) = εαwα(r), we find for the matrix elements

txpx =〈wα(r− ax̂)|εα +
∑
j6=0

V (r− rj)|wα(r)〉. (11)

The main contribution to this matrix element comes from the region between the two
lattice sites where the two orbitals have opposite sign. As εα < 0 and V (r) < 0, we
obtain that txpx = typy > 0. For typx , the orbitals have the same sign and typx = txpy < 0.

Performing the Fourier transformation

cαj =
1√
N

∑
k

e−ik·rjcαk (12)

of the annihilation operators in the Hamiltonian, we obtain

Hα =
∑
k

εα,kc
†
αkcαk (13)

with

εpx,k = ε+ 2t1 cos(kxa)− 2t2 cos(kya) (14)

εpy ,k = ε− 2t2 cos(kxa) + 2t1 cos(kya) (15)

where ε = εpx = εpy , t1 = txpx , and t2 = −typx > 0. The band structure is visualized
in Fig. 1 and the Fermi surface (εF = ε for half-filling) is given in Fig. 2.

Figure 1: The band structure is visualized by a 3d plot and contour plot of the two bands
(t1 = 0.4, t2 = 0.05).

c) We now also take into account the coupling between the different bands. The
nearest neighbour hopping matrix elements between different bands vanishes due to
the symmetry of the orbitals. Therefore, we have to consider next-nearest neighbour
hopping between different bands. In the same way as before, we obtain

Hα,α′ =
∑
j

t+αα′c
†
α(j+x̂+ŷ)cα′j + t−αα′c

†
α(j+x̂−ŷ)cα′j + h.c. (16)
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Figure 2: The Fermi surface in the absence of interband coupling (t1 = 0.4, t2 = 0.05).

with

t±αα′ =〈wα(r− a(x̂± ŷ)|H|wα′(r)〉 (17)

Due to symmetry properties and the analogue consideration as above, we obtain
t+pxpy = t+pypx = −t−pxpy = −t−pypx ≡ t3 > 0. Performing a Fourier transform of the
Hamiltonian, we obtain

Hα,α′ =
∑
k

−4t3 sin(kxa) sin(kya)c†αkcα′k. (18)

Defining gk = −4t3 sin(kxa) sin(kya), the complete Hamiltonian can be written as

H =
∑
k

(
c†pxk
c†pyk

)T(
εpxk gk
gk εpyk

)(
cpxk
cpyk

)
(19)

such that to diagonalize the Hamiltonian, we have to find the Eigenvalues E±k of
the matrix above determined by the equation

(εpxk − E±k )(εpyk − E±k )− g2k = 0. (20)

The calculation is straightforwards and we obtain

E±k = ε+ (t1 − t2)(cos(kxa) + cos(kya)) (21)

±
√

(t1 + t2)2(cos(kxa)− cos(kya))2 + 16t23 sin2(kxa) sin2(kya).

The resulting band structure is visualized in Fig. 3 and the Fermi surface (εF = ε
for half-filling) is plotted in Fig. 4.
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Figure 3: The band structure is visualized by a 3d plot and contour plot of the two bands
(t1 = 0.4, t2 = 0.05, t3 = 0.1).

Figure 4: The Fermi surface in the presence of interband coupling (t1 = 0.4, t2 = 0.05,
t3 = 0.1).

Exercise 3.2 Bloch Oscillations

a) In the presence of a uniform electric field E the quasi-momentum of the wave-packet
obeys

~k̇ = −eE. (22)

From the quasi-classical equations we derive immediately

k = −eEt/~, (23)

r = − 2t

eE
cos

(
aeEt

~

)
, (24)

and see that the location of the electron indeed oscillates in time. These oscillations
are caused by Bragg reflections at the Brillouin zone boundaries.

To observe these oscillations, the period of one Bloch oscillation should be less then
the relaxation time. With a relaxation time of approximately 10−14 s and a lattice
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constant a ≈ 1Å, we find that the electric field would have to be at least 106V/cm.
With fields that strong, our approximation of only one band would break down and
thus one can not see Bloch oscillations in metals.

Semiconductor superlattices, however, can have lattice constants of hundreds of
Å and in addition much bigger relaxation times (of the order of 10−10s). Indeed, in
such superlattices Bloch, oscillations have been observed (C. Waschke et al., Phys.
Rev. Lett. 70, 3319 (1993)). Furthermore, in optical lattices, for over a decade
now a playground for solid state physics, Bloch oscillations have been detected, see
Fig. 5 (M. ben Dahan et al., Phys. Rev. Lett. 76, 4510 (1996)) and are still an
object of interest (e.g. M. Gustavsson et al., Phys. Rev. Lett. 100, 080404 (2008)
or M. Fattori et al., Phys. Rev. Lett. 100, 080405 (2008)).

Figure 5: Experimental observation of Bloch oscillations of cesium atoms trapped in an
optical lattice. From: ben Dahan et al. (1996).

b) The new equation for the rate of change of k is

~k̇ = −eE − mṙ

τ
. (25)

With

ẋ = −2tτ

~
sin(q) (26)

we thus find

q̇ = −eaEτ
~

+
2mta2

~2
sin q = α + β sin q, (27)

where we have changed to dimensionless variables x = r/a, q = ka and t′ = t/τ . A
differential equation like this can be solved analytically by a separation of variables.
Note, however, that without solving this equation, we can already make some re-
marks about the type of solution we will obtain depending on the parameters α and
β: For |α| > |β|, there is no real q that could fulfill α + β sin q = 0 and thus we do
not expect the equation to have a stationary solution. Contrarily, for |β| > |α|, we
expect to find at least one stationary solution to the differential equation. We thus
have to tackle these two cases separately:

– |α| > |β|
Performing a separation of variables, Eq. (27) can be written as

dq

α + β sin q
= dt′. (28)
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Since |α| > |β|, the left hand side has no poles and we can integrate both sides
without further considerations. The right hand side yields t′ − t′0 and the left
hand side can be calculated using the standard substitution s = tan(q/2), after
which it reads ∫

2ds

(β + αs)2 + (α2 − β2)
. (29)

Setting s̃ = β + αs we can reduce the integral to the form∫
ds̃

s̃2 + γ2
. (30)

This is a standard integral yielding

t′ =
2√

α2 − β2
arctan

(
β + α tan q/2√

α2 − β2

)
, (31)

where we have set t′0 = 0. Eventually, we find the time dependence of q as

q(t′) = 2 arctan

√α2 − β2 tan
(
t′
√
α2 − β2/2

)
− β

α

 . (32)

We see that q still oscillates, however not linearly anymore, and that it is
bounded to [−π, π]. To further analyze the situation we can calculate the
velocity of the wave package v(t) = ẋ(t) by using the quasi-classical equations
of motion and the position x(t) by integrating v(t). The time dependence
of q, v and x is shown in Fig. 6a). Obviously, a small damping does not
oppress the oscillations completely but the wave-packets start drifting faster
with increasing damping and the period of the oscillation increases as well.

– |α| < |β|
Setting q̇ = 0 in Eq. (27) we find two q0’s within [−π, π] and thus two stationary
solutions. To analyze whether they are stable or not we expand q around the
stationary solution q = q0 + δq and linearize the equation of motion

q̇0 + δq̇ = δq̇ = α + β sin q0 + β cos q0δq = β cos q0δq. (33)

Figure 7 shows that the cosines of the solutions q0 and q′0 = π− q0 have always
opposite sign and the tangents at these points opposite slope, respectively.
Thus, we always find an ’attractive’ and a ’repulsive’ q0, meaning a stable and
an unstable stationary solution. We also realize that we have to take some
more care performing the integration as now we have two poles between which
we can integrate (Note that we actually have two intervals between which we
can integrate depending on the boundary conditions due to the periodicity of
q!). We thus anticipate two different solutions. We can start from Eq. (29) by
slightly rewriting it as ∫

2ds

(β + αs)2 − (β2 − α2)
(34)
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Figure 6: The time evolution for the quasi-momentum q, the velocity v and the position
r for the slightly damped and the overdamped case. For all plots, α = −0.5. a) The plots
show q, v = sin q and r for β = 0,−0.1,−0.2,−0.3 and −0.4. The curves in the q- and
v-plots are shifted for better visibility. While for β = 0 we have the expected oscillation
around a fixed point, for 0 < |β| < |α| the wave packet starts to drift with an increasing
velocity, yet still oscillating with an increasing period. b) β = −1: Shown are the two
different ways for q to converge to the stable stationary solution q = − arcsin 1/2.

and find immediately

t′ =
1√

β2 − α2
ln

∣∣∣∣∣β + α tan q/2−
√
β2 − α2

β + α tan q/2 +
√
β2 − α2

∣∣∣∣∣ . (35)

Indeed, we find that we have to differentiate between two cases depending on
the relative sign of the numerator and the denominator in the log.

If the signs are equal, the solution for q(t′) reads

q(t′) = 2 arctan

−
√
β2 − α2 coth

(
t′
√
β2 − α2/2

)
+ β

α

 , (36)

7



-Π -
3 Π

4
-

Π

2
-

Π

4

q

-1

-0.75

-0.5

-0.25

r

Figure 7: To emphasize the two different stationary solutions the graphical solution of
Eq. (27) is plotted. We see that the slope of the tangents is always opposite for the two
solutions, resulting in a stable and an unstable stationary solution.

a solution we would not simply have obtained by setting |β| > |α| in Eq. (32).
We see here clearly that q(t′) becomes constant for t′ →∞ and it can be shown
easily that it converges towards q → q0. Additionally, one can easily reassure
oneself that the relative sign of the denominator and the numerator in the log
in Eq. (35) remains positive and the solution is consistent. Figure 6b) shows
plots of q, v and x for the two different cases of intervals. Depending on the
boundary conditions, the wave-packet moves always in the same direction or
performs one single wiggle.

If the signs are different, the solution for q(t′) reads

q(t′) = 2 arctan

−
√
β2 − α2 tanh

(
t′
√
β2 − α2/2

)
+ β

α

 . (37)

Summarizing, we have found that, depending on the applied field E and the relax-
ation time τ , we can either have oscillating electrons drifting slightly or electrons
only drifting. The condition separating these two cases is

|E| < 2mta

e~τ
. (38)

We can also analyze the stationary situation for t′ →∞ some more. As in that case
q̇ = 0,

mṙ

τ
= −eE. (39)

Since the current in the metal is given by j = −enṙ with n the density of electrons
we find for the conductivity

σ =
e2nτ

m
, (40)

the famous Drude form.

For further information on Bloch oscillations, the article by J.B. Kireger and G.J.
Iafrate in Physical Review B 33, 5494(1986) is recommended.
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