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Exercise 10.1 Polarization of a neutral Fermi liquid

We introduce the notation σ0 = 1, σ1 = σx, σ2 = σy and σ3 = σz.

a) We write

δn̂~p =
∑
i

δni~pσ
i, ε̂~p =

∑
i

εi~pσ
i (1)

and

f̂~σ~σ′(~p, ~p
′) =

∑
ij

σif ij(~p, ~p′)σj where f ij =


f s, i = j = 0;
fa, i = j = 1, 2, 3;
0, i 6= j.

(2)

The energy functional is then given by

E − E0 =
∑
~p,αβ

(ε̂~p)αβ(δn̂~p)βα +
1

2V

∑
~p~p′

∑
αβα′β′

(δn̂~p)βαf̂αβ,α′β′(~p, ~p
′)(δn̂~p′)β′α′

=
∑
~p

tr [ε̂~p δn̂~p] +
1

2V

∑
~p~p′,ij

tr
[
σiδn̂~p

]
f ij(~p, ~p′) tr

[
σjδn̂~p′

]
= 2

∑
~p,i

εi~p δn
i
~p +

2

V

∑
~p~p′,i

δni~p f
ii(~p, ~p′) δni~p′ . (3)

In the last line we used the fact that tr[σiσj] = 2δij.

b) For an electric field along the z direction the (bare) quasiparticle (QP) energy ma-
trices have the form

ε̂~p = ε0~pσ
0 +

µEz
2m∗c

(
pyσ

1 − pxσ2
)
. (4)

Thus, together with (3) the polarization in the z-direction is obtained as

Pz =
∂E

∂Ez
=

µ

m∗c

∑
~p

(
pyδn

1
~p − pxδn2

~p

)
. (5)

c) We now consider the situation where the QP energies and the distribution of the
quasiparticles are changed in linear response by the application of the electrical field.
Thus, the bare QP energy changes according to

ε̂~p = ε̂0~p + δε̂~p (6)

where ε̂0~p = ε0~pσ
0 is the bare quasiparticle energy in the absence of the electric field

and

δε̂~p =
µEz
2m∗c

(
pyσ

1 − pxσ2
)
. (7)

The components of the dressed QP energy are different from the bare values due to
the QP interaction and will change according to

δε̃i~p = δεi~p +
2

V

∑
~p′

f ii(~p, ~p′)δni~p′ . (8)
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We can relate the change in the distribution function to the change in the QP
energies in linear response

δni~p =
∂n0

∂ε0~p
δε̃i~p = −δ(ε0~p − εF )δε̃i~p. (9)

The solution of the coupled Eqs. (8,9) can be found by using the ansatz

δε̃i~p = αδεi~p (10)

where α contains all the contributions from the QP interaction. Because

δεi~p =
1

2
tr

[
µEz
2m∗c

(
pyσ

1 − pxσ2
)
σi
]

=
µEz
2m∗c

×


py, i = 1;
−px, i = 2;
0, i = 0, 3;

(11)

it is clear that only the i = 1, 2 components will not vanish. Expanding the interac-
tion parameters in terms of spherical harmonics [see Eq. (??)] as well as using the
relations

p′y =
1

2i

√
8π

3
[Y11(θ

′, φ′)− Y1−1(θ′, φ′)] , (12)

p′x =
1

2

√
8π

3
[Y11(θ

′, φ′) + Y1−1(θ
′, φ′)] , (13)

(14)

it is straightforeward to show that

2

V

∑
~p

fa~p~p′δn
1,2
~p = −αN(εF )

∫
dΩ′

4π
fa(cos θ~p~p′)δε

1,2
~p (15)

= −αN(εF )
fa1
3
×
{
py, i = 1;
−px, i = 2;

(16)

where N(εF ) = m∗kF
π2~2 is the density of states at the Fermi energy. Therefore,

α = 1− αF
a
1

3
⇒ α =

1

1 +
Fa
1

3

. (17)

d) Using the expression (5) we find for the polarization

Pz = − µ

m∗c

N(εF )V

2
α

∫
dΩ

4π

(
pyδε

1
~p − pxδε2~p

)
(18)

= −
( µ

m∗c

)2 Ez
2

N(εF )V

2
α

∫
dΩ

4π

(
p2y + p2x

)︸ ︷︷ ︸
=~2k2F sin2 θ

(19)

= −
( µ

m∗c

)2 Ez
2

N(εF )V

2
α~2k2F

2π

4π

∫ π

0

dθ sin3 θ︸ ︷︷ ︸
= 2

3

(20)

= − µ2

2m∗c2
N

1 +
Fa
1

3

Ez. (21)
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Here we have used N
V

=
k3F
3π2 where N is the total number of particles. Consequently,

the susceptibility is given by

χ = − µ2

2m∗c2
N

1 +
Fa
1

3

(22)

= − εF
m∗c2

V N(εF )

3

µ2

1 +
Fa
1

3

. (23)

The response is dielectric.
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