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Exercise 2.1 Three qubit bit flip code

a.) The spectral decomposition of the Pauli matrix Z is given by Z = (+1)|0〉〈0| +
(−1)|1〉〈1|. The eigenvectors of Z1Z2 corresponding to the eigenvalue +1 are the-
refore |000〉, |001〉, |110〉 and |111〉. The eigenvectors of Z1Z2 corresponding to the
eigenvalue −1 are given by |010〉, |011〉, |100〉 and |101〉.
For the observable Z2Z3 we obtain the eigenvectors |000〉, |100〉, |011〉 and |111〉
corresponding to the eigenvalue +1 and the eigenvectors |010〉, |110〉, |001〉 and |101〉
corresponding to the eigenvalue −1.

b.) Applying the bit flip on the first qubit gives the state X1|ψ〉 = α|100〉 + β|011〉.
Measuring the observable Z1Z2 then yields −1 with probability 1 as X1|ψ〉 is an
element of the space spanned by the eigenvectors corresponding to the eigenvalue
−1 (see previous item). Furthermore, this implies that the state X1|ψ〉 is not altered
by this measurement.

Measuring Z2Z3 yields the outcome +1 with probability 1 as X1|ψ〉 is an element of
the space spanned by the eigenvectors corresponding to the eigenvalue +1. Again,
the state is not changed by this measurement.

c.) By using the same reasoning as above we can show that

• |ψ〉 : measuring Z1Z2 yields +1 and Z2Z3 yields +1.

• X2|ψ〉 : measuring Z1Z2 yields −1 and Z2Z3 yields −1.

• X3|ψ〉 : measuring Z1Z2 yields +1 and Z2Z3 yields −1.

The states are not changed by any of these measurements.

d.) The previous two items imply that the following strategy corrects a single bit flip
error:

• Measuring +1, +1 ⇒ do nothing

• Measuring −1, +1 ⇒ apply X1

• Measuring −1, −1 ⇒ apply X2

• Measuring +1, −1 ⇒ apply X3

Exercise 2.2 Shor code

a.) First note that the faulty state is given by

Z4X4|ψ〉 = α

(
|000〉+ |111〉√

2

)
⊗
(
−|100〉+ |011〉√

2

)
⊗
(
|000〉+ |111〉√

2

)
+ β

(
|000〉 − |111〉√

2

)
⊗
(
−|100〉 − |011〉√

2

)
⊗
(
|000〉 − |111〉√

2

)
.
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The projector P 45
+ which projects onto the eigenbasis of Z4Z5 corresponding to the

eigenvalue +1 is given by (see Exercise 2.1)

P 45
+ = I⊗ I⊗ I⊗ (|00〉〈00|+ |11〉〈11|)⊗ I⊗ I⊗ I⊗ I ,

where each identity operator I acts on a single qubit. Similarly, for the projector
P 45
− corresponding to the eigenvalue −1 has the following expression:

P 45
− = I⊗ I⊗ I⊗ (|01〉〈01|+ |10〉〈10|)⊗ I⊗ I⊗ I⊗ I .

It is not hard to see that Z4X4|ψ〉 ∈ range(P 45
− ), i.e. that Z4X4|ψ〉 is an element of

the space spanned by the eigenvectors of Z4Z5 corresponding to the eigenvalue −1.
As Z4X4|ψ〉 ∈ range(P 45

− ) it holds that P 45
− Z4X4|ψ〉 = Z4X4|ψ〉 and therefore the

state is not changed by the measurement. For the measurement Z5Z6 we obtain the
following projectors

P 56
+ = I⊗ I⊗ I⊗ I⊗ (|00〉〈00|+ |11〉〈11|)⊗ I⊗ I⊗ I
P 56
− = I⊗ I⊗ I⊗ I⊗ (|01〉〈01|+ |10〉〈10|)⊗ I⊗ I⊗ I .

This time we have that Z4X4|ψ〉 ∈ range(P 56
+ ) and therefore obtain the measure-

ment result +1 with probability 1. Again, the state is not altered by the measure-
ment.

As we have outcomes −1 and +1 we can conclude, by using Exercise 2.1, that we
have to apply X4 in order to correct the bit flip on the fourth qubit.

b.) Applying the bit flip operation X4 on the faulty state yields the bit flip corrected
state

X4(Z4X4|ψ〉) = −Z4X4X4|ψ〉 = −Z4|ψ〉 , (1)

where we used that X4 and Z4 anti-commute and that X4X4 = I.
Let |+〉 := 1/

√
2(|0〉+ |1〉) and |−〉 := 1/

√
2(|0〉 − |1〉). Note that X|+〉 = (+1)|+〉

and X|−〉 = (−1)|−〉. The projector P+ corresponding to the eigenbasis of the
observable X1X2X3 belonging to the eigenvalue +1 is then given by

P+ = |+ ++〉〈+ + +|+ |+−−〉〈+−−|+ | −+−〉〈−+−|+ | − −+〉〈− −+| .

And similarly, for the projector belonging to the eigenvalue −1 we obtain

P− = | − −−〉〈− − −|+ |+ +−〉〈+ +−|+ | −++〉〈−+ +|+ |+−+〉〈+−+| .

The corresponding projectors for the measurement X1X2X3X4X5X6 are then given
by

P 1..6
+ = P+ ⊗ P+ ⊗ I⊗3 + P− ⊗ P− ⊗ I⊗3

P 1..6
− = P+ ⊗ P− ⊗ I⊗3 + P− ⊗ P+ ⊗ I⊗3 .

By using that 1/
√

2(|000〉+|111〉) ∈ range(P+) and 1/
√

2(|000〉−|111〉) ∈ range(P−)
we can conclude that with probability 1 the measurement outcome −1 is obtained,
and therefore the state is not changed by the measurement.
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For the measurement X4X5X6X7X8X9 we obtain the projectors

P 4..9
+ = I⊗3 ⊗ P+ ⊗ P+ + I⊗3 ⊗ P− ⊗ P−
P 4..9
− = I⊗3 ⊗ P+ ⊗ P− + I⊗3 ⊗ P− ⊗ P+ ,

and therefore, we obtain the outcome −1 with probability 1. Again, the state is not
changed.

As we have the measurement outcomes −1 and −1 we can conclude, by using Exer-
cise 2.1 and the fact that a phase flip in the {|0〉, |1〉} basis is a bit flip in the
{|+〉, |−〉} basis, that a phase flip error has occurred in the second block of three
qubits.

c.) Note that (Z ⊗Z ⊗ I)|000〉 = |000〉 and (Z ⊗Z ⊗ I)|111〉 = |111〉. Applying Z4Z5Z6

on the state given in (1) then yields

(Z4Z5Z6)(−Z4|ψ〉) = −Z5Z6|ψ〉 = −|ψ〉 .

Hence, we have recovered the initial state |ψ〉 (with a global phase).

d.) The same procedure as above can be used.

i.) Measure Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9. This leaves the state unchanged,
and then given the measurement outcomes (syndrome), we can correct the bit
flip error. More specifically, we have the four cases in part b.) and c.) of Exercise
2.1 in either block 123, 456, or 789, and can determine where to apply an X
operator.

ii.) For the phase flip we can measure X1X2X3X4X5X6 and X4X5X6X7X8X9. This
determines which block the Z error occurs in. Specifically, -1 +1 eigenvalues
mean the Z error is in block 123, -1 -1 eigenvalues mean the Z error is in
block 456, +1 -1 eigenvalues mean the Z error is in block 789. By applying a
Z operation to each qubit in the block with an error −|ψ〉 is left.

Exercise 2.3 Coding and Decoupling

a.) The noise channel E can be written as

E(ρ) = (1− p)ρ+
p

3
X1ρX1 +

p

3
X2ρX2 +

p

3
X3ρX3 .

The isometric purification of this channel is given by

UE =
√

1− pI⊗ |0〉E +

√
p

3
X1 ⊗ |1〉E +

√
p

3
X2 ⊗ |2〉E +

√
p

3
X3 ⊗ |3〉E .
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Applying IA′ ⊗UE on the state 1/
√

2|0〉A′ ⊗ |000〉C + 1/
√

2|1〉A′ ⊗ |111〉C then yields

|φ〉A′CE =
1√
2
|0〉A′ ⊗

(√
1− p|000〉C ⊗ |0〉E +

√
p

3
|100〉C ⊗ |1〉E

+

√
p

3
|010〉C ⊗ |2〉E +

√
p

3
|001〉C ⊗ |3〉E

)
+

1√
2
|1〉A′ ⊗

(√
1− p|111〉C ⊗ |0〉E +

√
p

3
|011〉C ⊗ |1〉E

+

√
p

3
|101〉C ⊗ |2〉E +

√
p

3
|110〉C ⊗ |3〉E

)
.

Taking the partial trace over the system C results in

trC(|φ〉〈φ|A′CE) =

(
1

2
|0〉〈0|A′ +

1

2
|1〉〈1|A′

)
⊗

(
(1− p)|0〉〈0|E +

p

3
|1〉〈1|E +

p

3
|2〉〈2|E +

p

3
|3〉〈3|E

)
.

b.) The channel representing this noise process can be written as

E(ρ) = (1− p)ρ+
p

6
X1ρX1 +

p

6
X2ρX2 +

p

6
X3ρX3

+
p

6
X1X2ρX1X2 +

p

6
X2X3ρX2X3 +

p

6
X1X3ρX1X3 . (2)

The corresponding isometric purification is

UE =
√

1− pI⊗ |0〉E +

√
p

6
X1 ⊗ |1〉E +

√
p

6
X2 ⊗ |2〉E +

√
p

6
X3 ⊗ |3〉E

+

√
p

6
X1X2 ⊗ |4〉E +

√
p

6
X2X3 ⊗ |5〉E +

√
p

6
X1X3 ⊗ |6〉E .

The state |φ〉A′CE is then given by

|φ〉A′CE =
1√
2
|0〉A′ ⊗

(√
1− p|000〉C ⊗ |0〉E +

√
p

6
|100〉C ⊗ |1〉E

+

√
p

6
|010〉C ⊗ |2〉E +

√
p

6
|001〉C ⊗ |3〉E +

√
p

6
|110〉C ⊗ |4〉E

+

√
p

6
|011〉C ⊗ |5〉E +

√
p

6
|101〉C ⊗ |6〉E

)
+

1√
2
|1〉A′ ⊗

(√
1− p|111〉C ⊗ |0〉E +

√
p

6
|011〉C ⊗ |1〉E

+

√
p

6
|101〉C ⊗ |2〉E +

√
p

6
|110〉C ⊗ |3〉E +

√
p

6
|001〉C ⊗ |4〉E

+

√
p

6
|100〉C ⊗ |5〉E +

√
p

6
|010〉C ⊗ |6〉E

)
.
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Taking the partial trace over the system C results in

trC(|φ〉〈φ|A′CE) =

(
1

2
|0〉〈0|A′ +

1

2
|1〉〈1|A′

)
⊗
(

(1− p)|0〉〈0|E +
p

6
|1〉〈1|E

+
p

6
|2〉〈2|E +

p

6
|3〉〈3|E +

p

6
|4〉〈4|E +

p

6
|5〉〈5|E +

p

6
|6〉〈6|E

)
+

(
1

2
|0〉〈1|A′ +

1

2
|1〉〈0|A′

)
⊗
(p

6
|1〉〈5|E +

p

6
|2〉〈6|E

+
p

6
|3〉〈4|E +

p

6
|4〉〈3|E +

p

6
|5〉〈1|E +

p

6
|6〉〈2|E

)
.

This state is not a product state between systems A′ and E as was the state in the
previous item. Consequently, error correction does not work for the three qubit bit
flip code if two bit flips can occur.
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