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Abstract

This course gives an introduction to Quantum Information Theory
and Quantum Computation through the study of symmetries of physical
systems. After an introduction to the concept of quantum information
as the spin degree of a particle, the course develops this concept in two
ways: First, the distillation of entanglement, one of the most fundamental
tasks in quantum information theory, is explained as a measurement of
the total spin of a bunch of particles. Second, computation is introduced
as an exchange of particles, leading to the topological model of quantum
computation.

This course aims at an understanding of quantum information as a
natural physical concept. On the technical level, methods familiar from a
basic course in quantum mechanics will be adapted to studying quantum
information theory and computation.

The course is complementary to the courses on quantum information
theory by Professor Renato Renner (D-PHYS) and on quantum compu-
tation by Professor Stefan Wolf (D-INF). The course is aimed at master
students in physics. As prerequisites is a basic course in quantum me-
chanics. The course language is English.
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1 Introduction

1.1 Remarks

Rolf Landauer famously observed that information is physical and that every act
of information processing is a physical process. Since the information processing
of our interest is done on our planet and with small devices, we are interested
in studying the information processing within non-relativistic quantum theory.
Quantum Information Science is the name for this subject which is formed at
the interface of Computer Science and Quantum Physics.

Quantum
Physics

Computer
Science

Quantum 
Information 
Science

Figure 1: Quantum Information Science is formed at the intersection of Com-
puter Science and Quantum Physics

Whereas a typical introductory course to the subject develops the concepts
from a computer science or information theoretic perspective (see Literature
list), we want to take as starting point quantum theory as it is taught in a
basic course on quantum physics at the Bachelor level. There, symmetry played
a major role in analysing physical systems, so it is expected that quantum
information processing can be analysed with similar methods.

We will illustrate this in the realm of quantum information processing with
the fundamental problem of entanglement distillation. Entanglement stands
for strong quantum correlations which we learn will help us with teleportation,
superdense coding and cryptography. Entanglement distillation we call the pro-
cess of extracting useful entanglement from not so useful entanglement. Since
this is a process that involves many identical spins we will use the symmetry
groups SU(2) and the group of permutations responsible for particle exchange
in order to analyse this process.

This will lead to us to the topic of quantum computation, where we will
learn that computation can be performed by the permutation of particles. In
order to obtain a universal quantum computer, however, fermions and bosons
do not suffice and we need to take a look at the exchange of so-called anyons –
leading us to the topological model of quantum computation.
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1.2 Literature

Lecture notes will be handed out. The following is a list of literature on the
broader topics which may be used as complementary reading.

• M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation, Cambridge University Press

• J. Preskill, Lecture Notes, Caltech, http://www.theory.caltech.edu/

people/preskill/ph229/references.html

• R. Renner, Lecture Notes, ETH,
http://www.itp.phys.ethz.ch/education/lectures_fs10/QIT

2 Formalism of Quantum Mechanics

In this section we will repeat the axiomatic approach to quantum theory, known
from a basic course in quantum mechanics, with a view towards its application
in quantum information theory.

2.1 Axioms

The following are the axioms of quantum mechanics.

• (System) To every physical system we associate a Hilbert space H. (In
this course, we will restrict attention to the finite dimensional case, i.e.
H ∼= Cd.) The Hilbert space associated to a joint system that is composed
of two subsystems A and B with respective Hilbert spaces HA and HB is
given by the tensor product HA ⊗HB .

• (State) The state of a system is described by a vector |ψ〉 ∈ H that is
normalised 〈ψ|ψ〉 = 1. 1

• (Time Evolution) The (discrete) time evolution of the state |ψ〉 of a system
H corresponds to the application of a unitary matrix U ∈ U(H), i.e. 2

|ψ′〉 = U |ψ〉 .

• (Measurement) Hermitian operators (observables) correspond to observ-
able quantities. Given an observable R, consider its spectral decomposi-
tion R =

∑
i riPi where Pi is the projector onto the eigenspace of R with

1We make use of Dirac’s bra-ket notation: For the column vector


ψ1

ψ2

...
ψd

 we write |ψ〉

and for the corresponding row vector (ψ̄1, ψ̄2, . . . , ψ̄d) we write 〈ψ|. The natural inner product
between |ψ〉 and |φ〉 ∈ H then takes the form 〈ψ|φ〉 =

∑
i ψ̄iφi.

2For a time-independent Hamiltonian H and an evolution of time ∆t, U = eiH∆t.
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eigenvalue ri. (All ri are distinct). The measurement results in outcome
ri with probability pi := trPi|ψ〉〈ψ|. The post-measurement state given
that result ri was obtained is given by 1√

ri
Pi |ψ〉.

2.2 Density Matrices

A careful look at the axioms reveals that the states |ψ〉 and eiφ |ψ〉 cannot be
distinguished for any angle φ ∈ [0, 2π) by measurement (even if preceeded by a
time evolution). The state of a system is therefore described by the equivalence
class of states {eiφ |ψ〉 , φ ∈ [0, 2π)}, or equivalently the projector |ψ〉〈ψ|, rather
than the vector |ψ〉.

Imagine that we are given a source that ejects a particle in state |ψj〉〈ψj |
with probability qj but that we are not told the value j.

SOURCE {qj , |ψj〉〈ψj |}

How should we describe the state of the system? Pragmatically we should find
a description such that all measurements of this particle are described accu-
rately. That is if we measure observable R, then from our description we should
be able to compute that ri occurs with probability pi =

∑
j qjtrPi|ψj〉〈ψj |.

Exchanging the sum and the trace we find pi = trPi

(∑
j qj |ψj〉〈ψj |

)
. If we

therefore describe the state of the particle that the source emits by the operator
ρ :=

∑
j qj |ψj〉〈ψj | we can compute all probabilities accurately.

SOURCE ρ

Note that ρ is a positive semi-definite Hermitian operator with trρ = 1 and
that – by the spectral theorem – every such operator can be generated by some
source. We therefore make the following definition: an operator ρ is called
density operator (or density matrix or state) if it is a positive semi-definite
Hermitian operator with trace equal to one. Note that a density operator ρ
takes the form |ψ〉〈ψ| for some |ψ〉 if and only the rank of ρ equals to one. Such
states are called pure states, states of higher rank are known as mixed states.

We have thus introduced density operators in order to account for our ig-
norance of the label j. There is another reason to introduce density operators:
Say we are given two particles in state |ψ〉〈ψ|AB , where |ψ〉AB ∈ HA ⊗ HB
and would like to describe the state of the first system only. Again we want to
make sure that the probabilities of a measurement with observable R on parti-
cle A are described accurately, pi = tr(Pi ⊗ 1B)|ψ〉〈ψ|AB . Executing the trace
in two steps, first as a trace over system B and then over system A, we find
pi = trPiρA, where ρA = trB |ψ〉〈ψ|AB :=

∑
kl |k〉〈l|Atr[|l〉〈k|A ⊗ 1B |ψ〉〈ψ|AB ],

where |k〉A is an orthonormal basis for HA. Since |ψ〉〈ψ|AB is positiv semidef-
inite with tr|ψ〉〈ψ|AB = 1 it follows that also ρA is positiv semidefinite with
trρA = 1 and hence a density matrix. The following simple example shows that
ρA in general does not have rank one and hence is not of the form ρA = |φ〉〈φ|A
for |φ〉A ∈ HA. As an example consider HA ∼= HB ∼= C2 with |ψ〉AB :=
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1√
2
(|0〉A |1〉B − |1〉B |0〉A), the singlet state (we typically omit the tensor prod-

uct, i.e. |0〉 |1〉 = |0〉 ⊗ |1〉). A simple calculation shows that ρA = 1A
2 , hence

rank ρA = 2.

SOURCE |ψ〉AB
ρA

*-+,trB

Given a density matrix ρAB we can of course also compute the partial trace over
system B.

3 The Qubit

3.1 The Bloch sphere

The simplest quantum system has a two-dimensional state space H ∼= C2, the
qubit. We know it already quite well as the spin- 1

2 system, and so we start by
introducing the Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

Together with the identity the Pauli matrices form a basis for the two-by-
two Hermitian matrices. Since density matrices are Hermitian and have non-
negative eigenvalues that sum to one, we can express any density operator ρ
as

ρ =
1

2
(1 + ~v.~σ),

for the Bloch vector ~v ∈ R3 with v2
x + v2

y + v2
z ≤ 1, σ = (σx, σy, σz) and

~v.~σ = vxσx + vyσy + vzσz. A density matrix can thus be represented as a
vector in the Bloch ball, the three dimensional unit ball. When v2

x + v2
y +

v2
z = 1, the density matrix has rank one and the density matrix (or vector)

lies in the Bloch sphere. The graphics shows the state |ψ〉 parametrised as
|ψ〉 = cos θ2 |0〉 + eiφ sin θ

2 |1〉 , θ ∈ [0, π), φ ∈ [0, 2π). The Bloch vector is ~v =
(sin θ cosϕ, sin θ sinϕ, cos θ).
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3.2 SU(2) versus SO(3)

The group SU(2) is the group of two-by-two unitary matrices with determinant
one, i.e. it consists of the elements

(
α −β̄
β ᾱ

)

where α, β ∈ C with |α|2 + |β|2 = 1. From this parametrisation, it is obvious
that as a manifold, SU(2) ∼= S3, the three-sphere, since for α = x + iy and
β = z + iw, with x, y, z, w ∈ R: x2 + y2 + z2 + w2 = 1.

SU(2) is a Lie group and as such one can compute its Lie algebra (the
tangent space at the point 1 ∈ SU(2). In order to do so we note that the
one parameter subgroups are of the form eitA with A traceless and Hermitian.
The derivative at 1 then shows that the Lie algebra su(2) of SU(2) consists
of traceless Hermitian matrices, i.e. is spanned by Pauli matices. The latter
satisfy the commutation relations

[σx, σy] = 2iσz. (1)

We can then look at the one-parameter subgroups of SU(2) as given by ro-
tations around a unit vector ~e by an angle α ∈ [0, 4π): U(~e, α) = e−i

α
2 ~e.~σ =

cos α2 1 − i sin α
2~e.~σ. This unitary matrix when applied to a density matrix (by

conjugation) results in a rotation R(~e, α) of the Bloch vector around the axis ~e
with an angle α in the Bloch sphere according to the formula

U(~e, α) (~v.~σ)U(~e, α)† = (R(~e, α).~v).~σ.

The map
SU(2) 3 U(~e, α) 7→ R(~e, α) ∈ SO(3)

is a homomorphism with kernel {1,−1}. SU(2) is the double covering group
of SO(3), the Lie algebras are isomorphic. The fact that SU(2) is the (simply
connected) double cover of the (not simply connected) SO(3) can be illustrated
nicely with Dirac’s spinner-spanner (see also [2]). 3

3.3 Measurement

We can measure a qubit along a certain direction in space, given by a unit
vector ~e. With this we mean that we measure the observable ~e.~σ. Note that it
is sufficient to consider traceless observables and unit vectors, as the addition
of identity and the stretching of the vector does not effect the statistics, but

3An element in SO(3) is given by an angle and an axis, for instance represented as a globe
(north south axis and point, e.g. Rome.) A path in SO(3) can thus be represented as the
movement of the globe with the arm (the center does not play a role). A path homotopic to
the trivial path (no movement) is thus a wiggle of the arm. Interestingly we cannot obtain a
single revolution of the globe around a fixed axis (a path that starts at the identity and ends
as the identity) as a wiggle of the arm, but we can with a double revolution. Hence SO(3) is
not simply connected but has a simply connected double cover group.
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only the labeling of the outcomes. The projectors onto the two eigenvectors are
given by P± := 1

2 (1± ~e.~σ). The probabilities are

trP±ρ =
1

2
(1± ~e.~v)

4 The Entangled Bit or Ebit

4.1 Superdense Coding

Here we will explain how Alice can send two classical bits of information to Bob
by sending only one qubit under the assumption that they share an ebit, that
is the state

1√
2
|00 + 11〉AB .

This is known as superdense coding.
Before we explain how this works, let us introduce the four Bell states |ψαβ〉

|ψ00〉 =
1√
2
|00 + 11〉

|ψ01〉 =
1√
2
|00− 11〉

|ψ10〉 =
1√
2
|01 + 10〉

|ψ11〉 =
1√
2
|01− 10〉

Note that σαxσ
β
z ⊗1B |ψ00〉 = |ψαβ〉. The Bell measurement is the joint measure-

ment of the commuting operators σz⊗σz and σx⊗σx. Since the joint eigenstates
of these two operators are the Bell states, the measurement projectors are the
projectors onto these states.

The superdense coding protocol then works as follows.

• Alice wants to send two bits α, β ∈ {0, 1} to Bob.

• Alice and Bob have systemsA andB, respectively in a state 1√
2
|00 + 11〉AB

• Alice applies the unitary (Pauli) matrix σαxσ
β
z to system A.

• Alice sends qubit A to Bob

• Bob performs the Bell measurement on systems AB and obtains outcome
α, β ∈ {0, 1}.

σαxσ
β
z

1√
2
|00 + 11〉AB

Bell
=<:; α

β

The protocol clearly transmits the two bits correctly.
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4.2 Teleportation

”An unknown quantum state |φ〉 can be disassembled into, then later recon-
structed from, purely classical information and purely nonclassical EPR corre-
lations. To do so the sender, Alice, and the receiver, Bob, must prearrange the
sharing of an EPR-correlated pair of particles. Alice makes a joint measure-
ment on her EPR particle and the unknown quantum system, and sends Bob
the classical result of this measurement. Knowing this, Bob can convert the state
of his EPR particle into an exact replica of the unknown state |φ〉 which Alice
destroyed.” [3]

In other words we have the following setup

• Alice has a system A′ in state |φ〉A′ that she wants to transfer to Bob.

• Alice and Bob have systemsA andB, respectively in a state 1√
2
|00 + 11〉AB

• Alice performs the Bell measurement (see below) on systems AA′ and
obtains outcome α, β ∈ {0, 1}.

• Alice tells Bob what outcome she has obtained and he applies the unitary
(Pauli) matrix σαxσ

β
z to system B.

• Bob holds state |φ〉B .

|φ〉A′
Bell

=<:; α •
β •

1√
2
|00 + 11〉AB

σαxσ
β
z |φ〉B

Note that trB |ψαβ〉〈ψαβ | = 1
41A for all α, β. Each outcome is equally prob-

able, since

tr(|ψαβ〉〈ψαβ |A′A ⊗ 1B)(|φ〉〈φ|A′ ⊗ |ψ00〉〈ψ00|AB)

= tr|ψαβ〉〈ψαβ |A′A(|φ〉〈φ|A′ ⊗
1

2
1A)

=
1

2
tr

1

2
1A′ |φ〉〈φ|A′ =

1

4

Let us now write |φ〉 = c0 |0〉+ c1 |1〉. The state on Bob’s side, given that Alice
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has measured αβ is given by

〈ψαβ | (c0 |0〉+c1 |1〉) |ψ00〉
= c0 〈ψαβ | |0〉 |ψ00〉+ c1 〈ψαβ | |1〉 |ψ00〉

=
1√
2

(c0〈ψαβ |000 + 011〉+ c1〈ψαβ |100 + 111〉)

=
1

2
√

2
(c0〈ψαβ |(00 + 11)0 + (00− 11)0 + (01 + 10)1 + (01− 10)1〉

+ c1〈ψαβ |(10 + 01)0 + (10− 01)0 + (11 + 00)1 + (11− 00)1〉)

=
1

2

(
c0 〈ψαβ | (|ψ00〉 |0〉+ |ψ01〉 |0〉+ |ψ10〉 |1〉+ |ψ11〉 |1〉)

+ c1 〈ψαβ | (|ψ10〉 |0〉 − |ψ11〉 |0〉+ |ψ00〉 |1〉 − |ψ01〉 |1〉)
)

=
1

2

(
c0 |α〉+ (−1)βc1 |ᾱ〉

)

=
1

2
σαxσ

β
z |φ〉

Bob now applies σαxσ
β
z after which the state is back in the state |φ〉 since the

Pauli matrices square to the identity. Note that the transmission of the classical
bits is essential, otherwise the state is 1/4. Since every mixed state of one qubit
is a mixture of pure states, the same holds for true for mixed states by linearity.

This illustrates that the ebit is a great resource in quantum information
theory. Other uses of ebits are in quantum key distribution.

4.3 Distilling Ebits

Unfortunately, it is not so easy to distribute ebits between Alice and Bob. In
practice, namely, imperfect transmission channels (e.g. glas fibres) introduce
noise. The following question arises:

”Given a state ρAB, can we convert it into an ebit by application of local
transformation and classical communication?”

We have seen before that for instance when we are given 1√
2
|01 + 10〉 we can

convert it into 1√
2
|00 + 11〉 by application of σz on Alice’s or Bob’s side only.

In general this is not possible, so we have to refine our question.
”Given n copies of a state ρAB, how many ebits can we extract by application

of local transformation and classical communication per copy when n→∞?”
Since this is a question about states that live on (HA ⊗ HB)⊗n where n is

large, we will have to develop tools in order to deal with them. The tools that
we develop in this course will given an answer to this question for pure states
ρAB = |ψ〉〈ψ|AB .

5 Spin

In this section, we will repeat, introduce and develop the representation-theoretic
tools necessary in order to solve the entanglement distillation problem intro-
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duced above. For simplicity, we will only do this for qubits, i.e. the group
SU(2). All this can also be done in higher dimensions, i.e. for SU(d). Since
this will complicate the proofs significantly, we will not do this in this lec-
ture. The interested student is referred to the PhD theses of Aram Harrow
(arXiv:quant-ph/0512255) and myself (arXiv:quant-ph/0604183).

5.1 Group Representations

Let us quickly recall that a representation of a group G on a (complex) vector
space V is a map

T : G→ GL(V )

that preserves the group operation, i.e. for all g, h ∈ G

T (g)T (h) = T (gh).

dimV is called the dimension of the representation. A representation is irre-
ducible if the only subspaces of V that are invariant under G are the empty
subspace and V itself.

Theorem 1. Let T be a representation of a finite group G. Then T is iso-
morphic to a direct sum of irreducible representations of G, i.e. T ∼=

⊕
i Ti for

irreducible representations Ti of G.

Proof. Let W be the vector space on which G acts. Let (w1, w2) be a scalar
product on W , then

{w1, w2} =
1

|G|
∑

g∈G
(gw1, gw2)

is a G-invariant scalar product on W . If V is an invariant subspace of W , then
V ⊥, the orthogonal complement of V in W , is also an invariant subspace: for
v ∈ V and v⊥ ∈ V ⊥, {gv⊥, v} = {v⊥, g−1v} = 0, since g−1v ∈ V and V is G-
invariant. In this way one can keep on breaking up the space of W into invariant
subspaces. This procedure will terminate, because W is finite-dimensional.

In fact this theorem holds for any compact group, since their exists a unique
invariant probability measure on the group (the Haar measure) so that we can
perform the averaging trick. In the exercises the Haar meausure for SU(2) will
be constructed explicitely.

Two representations T1 and T2 are equivalent if they have the same di-
mension and if there is an element K ∈ GL(V ) such that for all g ∈ G:
KT1(g)K−1 = T2(g). Whenever the averaging trick works, then any repre-
sentation T1 is equivalent to a unitary representation,

T2 : G→ U(V ).
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In order to see this write explicitly {v, w} = 〈v|A |v〉 for some positive-definite
matrix A. Note that A = K†K for an invertible K. Then (defining |w′〉 = K |w〉
and |v′〉 = K |v〉)

〈v|w〉 = 〈v′|K†K |w′〉 = {v′, w′} = {T1(g)v′, T1(g)w′}
= 〈v′|T1(g)†K†KT1(g) |w′〉
= 〈v| (K−1)†T1(g)†K†KT1(g)K−1 |w〉
= 〈v|T2(g)†T2(g) |w〉 .

We denote with Ĝ the set of equivalence classes of representations of G.
According to Theorem1, a representation T of G can be decomposed into a
direct sum of irreducible representations:

T ∼=
⊕

α∈Ĝ

Tα ⊗ 1mα .

Each irreducible representation Tα occurs with multiplicitymα ∈ N0. 1d denotes
the identity matrix on Cd.

Given two representations T1 : G→ GL(V1) and T2 : G→ GL(V2) we define
the tensor product representation

T1 ⊗ T2 : G→ GL(V1 ⊗ V2)

by
(T1 ⊗ T2)(g) := T1(g)⊗ T2(g).

Tensor product representations are reducible in general.
Probably the most frequently used result in representation theory is the famous
lemma by Isaac Schur.

Lemma 2 (Schur’s lemma). Let T1 and T2 be irreducible representations of G
acting on V1 and V2, respectively. If the homomorphism φ : V1 → V2 commutes
with the action of G, then

• either φ is an isomorphism, or φ = 0.

• if V1 = V2, then φ = λ1 for some λ ∈ C.

Proof. kerφ is an invariant subspace of V1 since

|v〉 ∈ kerφ⇒ φ |v〉 = 0

⇒ T2(g)φ |v〉 = 0

⇒ φT1(g) |v〉 = 0

⇒ T1(g) |v〉 ∈ kerφ.

imφ is an invariant subspace of V2 since

|v〉 ∈ imφ⇒ ∃ |w〉 ∈ V1; |v〉 = φ |w〉
⇒ T2(g) |v〉 = T2(g)φ |w〉 = φT1(g) |w〉
⇒ T2(g) |v〉 ∈ imφ.
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Since the action of G on V1 and V2 is irreducible, kerφ, imφ ∈ {∅, V1}. Hence
φ is either an isomorphism or φ vanishes. This proves the first part of the lemma.
Since C is algebraically closed, the characteristic polynomial det(φ− λ1) must
have a root λ ∈ C and hence ker(φ − λ1) 6= ∅. φ − λ1 is therefore not an
isomorphism, which implies (since φ− λ1 also commutes with the action of G)
by the first part of the lemma that φ− λ1 = 0.

Schur’s lemma implies that the decomposition in Theorem 1 is unique up to
isomorphism. The classification of representations of a finite groupG is therefore
reduced to the classification of all irreducible representations.

Most theorems in this section carry over almost unchanged to compact
groups. Most importantly this is true for Theorem 1 and Schur’s lemma, Lemma
2.

In the following we will remind ourselves of the representation theory for
SU(2).

5.2 Representations of SU(2)

Since SU(2) is compact the above discussion applies and we can assume that all
representations are unitary, in fact with determinant one. Since SU(2) is fur-
thermore simply connected, the irreducible representations stand in one-to-one
relation with irreducible representations of its Lie algebra su(2)4 A representa-
tion of su(2) is a homomorphism

t : su(2)→ End(V )

that preserves the Lie bracket

[t(A), t(B)] = t([A,B]).

In particular, we find with (1),

[t(σx), t(σy)] = 2it(σz).

This representation extends linearly to

su(2)C := su(2)⊕ isu(2) ∼= sl(2) = {2x2 complex traceless matrices}.
It is often convenient to consider su(2)C instead of su(2) since it can be given
a somewhat nice bases in terms of the raising and lowering operators and the
Pauli-σz matrix:

σ+ =

(
0 1
0 0

)
σ− =

(
0 0
1 0

)
σz =

(
1 0
0 −1

)
.

4A Lie algebra g is a (real or complex) vector space together with a bilinear map (Lie
bracket) [, ] : g× g→ g that satisfies

• (linearity [αa+ βb, c] = α[a, c] + β[b, c]

• (skew-symmetry]) [a, b] = −[b, a]

• (Jacobi) [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0

for all a, b, c ∈ k and real or complex α and β.
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We now quickly recall the irreducible representations of SU(2). For each k ∈ N0,
there is a k+ 1 dimensional irreducible representation, in the physics literature
known as spin-k2 representation. We define this representation, which we denote
by Vk as an SU(2) and as vk as a representation of su(2) by its action on the
k + 1 orthonormal basis states |k, l〉, 0 ≤ l ≤ k. The space on which these
representations act is denoted by Vk.

vk(σ−) |k, l〉 =
√
l(k − l + 1) |k, l − 1〉

vk(σ+) |k, l〉 =
√

(k − l)(l + 1) |k, l + 1〉
vk(σz) |k, l〉 = (2l − k) |k, l〉

2l − k is called the weight of the weight vector |k, l〉. From which follows that
the total angular momentum (or Casimir) operator is a scalar:5

∑

i∈{x,y,z}

vk(σi)vk(σi) = k(k + 2)1. (2)

5.3 Clebsch-Gordan Decomposition

The decomposition of two irreducible representations of SU(2) is known as the
Clebsch-Gordan decomposition. It reads

Vk1 ⊗ Vk2 ∼=
k1+k2⊕

k=|k1−k2|:k mod 2=k1+k2 mod 2

Vk.

In other words the multiplicities mk are one exactly when |k1−k2| ≤ k ≤ k1 +k2

with k even if k1 +k2 even and zero otherwise. We illustrate this decomposition
in terms of so-called Young frames.

⊗ ∼= ⊕ ⊕
∼= ⊕ ⊕

The intermediate step corresponds to U(2) representations, which ”remember“
the number of boxes.

Writing down the change of basis explicitly

|k, l〉 =
∑

l1,l2

|k1, l1〉 |k2, l2〉 (〈k1, l1| 〈k2, l2| |k, l〉) . (3)

5In general, one can replace the sum over Pauli operators by a sum over the elements of a
basis of the Lie algebra and the left argument by the corresponding elements from the dual
basis. This gives us the alternative formula

2vk(σ−)vk(σ+) + 2vk(σ+)vk(σ−) + vk(σz)vk(σz) = k(k + 2)1

13



The coefficients 〈k1, l1| 〈k2, l2| |k, l〉 are known as Clebsch-Gordan coefficients
and form a unitary matrix. One can find them in many books and we will only
recall the important special case where k2 = 1. Our notation reduces in this
case to |1, 1〉 = |1〉 and |1, 0〉 = |0〉.

Before we do so, let us not that taking the derivative of the action of g ∈
SU(2) on V1 ⊗ V2 we obtain the following action for su(2) on V1 ⊗ V2:

su(2) 3 a 7→ (vk1 ⊗ vk2)(a) = vk1(a)⊗ 1 + 1⊗ vk2(a).

This implies that the weight of the vectors is additive, i.e. that we can restrict
the sum in eq.(3) to 2l1 − k1 + 2l2 − k2 = 2l − k. In particular we find

|k + 1, k + 1〉 = |k, k〉 |1, 1〉 .

The vector |k + 1, k〉 is now obtained applying the lowering operator to this
equation. Hence

vk+1(σ−) |k + 1, k + 1〉 = (vk(σ−) |k, k〉) |1, 1〉+ |k, k〉 v1(σ−) |1, 1〉

or

|k + 1, k〉 =

√
k

k + 1
|k, k − 1〉 |1, 1〉+

√
1

k + 1
|k, k〉 |1, 0〉

and by induction we find

|k + 1, l〉 =

√
l

k + 1
|k, l − 1〉 |1, 1〉+

√
k + 1− l
k + 1

|k, l〉 |1, 0〉

The states |k − 1, l − 1〉 then follow (up to a phase factor) since they have to be
orthogonal to |k + 1, l〉:

|k − 1, l − 1〉 = −
√
k + 1− l
k + 1

|k, l − 1〉 |1, 1〉+

√
l

k + 1
|k, l〉 |1, 0〉 .

Inverting this transformation and remembering with help of a path label p ∈
{1,−1} whether we have increased or decreased the total spin we find

|k, l〉 |1, 0〉 =

√
k + 1− l
k + 1

|k + 1, l,+〉+

√
l

k + 1
|k − 1, l − 1,−〉

|k, l − 1〉 |1, 1〉 =

√
l

k + 1
|k + 1, l,+〉 −

√
k + 1− l
k + 1

|k − 1, l − 1,−〉 .

Defining the unitary matrix

Ukl :=




√
l

k+1

√
k+1−l
k+1

−
√

k+1−l
k+1

√
l

k+1




14



which corresponds to a rotation around the y-axis with angle θkl := arccos
√

l
k+1 ,

we find the following circuit transforming the spin information6 s into path in-
formation7 p [1].

|k〉
UCG

|k′〉 |k〉 • �������� |k′〉
|l〉 |l′′〉 =̂ |l〉 �������� • �������� |l′′〉
|s〉 |p〉 |s〉 • Ukl′ • • |p〉

where
|l〉 �������� |l′ := l + s〉
|s〉 • |s〉

and
|k〉 �������� |k′ := k + p〉
|p〉 • |p〉

and
|l′〉 �������� |l′′ := l′ + (p− 1)/2〉
|p〉 • |p〉

and
|k〉 • |k〉
|l′〉 • |l′〉
|s〉 Ukl′ |p〉

The circuits are to be understood in the following way:

• the vector |k, l〉 = |k〉 |l〉 for 0 ≤ l ≤ k

• the circuit is only defined on valid inputs, i.e. 0 ≤ l ≤ k

• the registers holding k and l are assumed to be big enough, so that all
computations can be performed (i.e. Cn for k, k′, l, l′ ≤ n.)

• the Clebsch-Gordan circuit defines an isometry from the space of valid
inputs to the output space Cn ⊗ Cn ⊗ C2, holding k′, l′ and p.

5.4 Schur Transform

In this section, we want to iteratively decompose V ⊗n1 into irreducible represen-
tations. We will do this by applying consecutively the Clesch-Gordan decom-

6|1〉 =

(
1
0

)
and |0〉 =

(
0
1

)
7|+〉 =

(
1
0

)
and |−〉 =

(
0
1

)
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position.

V ⊗n1
∼= (V0 ⊕ V2)⊗ V ⊗n−2

1

∼= (V0 ⊗ V1 ⊕ V2 ⊗ V1)⊗ V ⊗n−3
1

∼= (V1 ⊕ (V1 ⊕ V3))⊗ V ⊗n−3
1

∼=
(
V1 ⊗ C2 ⊕ V3

)
⊗ V ⊗n−3

1

...

∼=
⊕

k

Vk ⊗ Cm
n
k

The corresponding circuit is a concatenation of the circuits above [1].

|1〉
UCG UCG UCG

|k〉
|i1〉 · · · |l〉
|i2〉 |p1〉 |i3〉 |p2〉 |in〉 |pn−1〉

Let |p〉 = |p1〉 . . . |pn−1〉 and note that the final states |k〉 |l〉 |p〉 take values
0 ≤ k ≤ n, 0 ≤ l ≤ n and pi ∈ {+,−}. Of course the number of possibilities for
l is constraint to 0 ≤ l ≤ k. For p there are mn

k possibilities. Since all inputs are
valid, the Schur transform is an isometry from (C2)⊗n to Cn ⊗Cn ⊗ (C2)⊗n−1.

5.5 The Number of Paths

Let us now compute a recursion formula for mn
k and start by noting that n even

implies mn
k = 0 for k odd and vice versa. It is also clear that mn

k = 0 for k > n.
Assume

V ⊗n1
∼=

n⊕

k=0

Vk ⊗ Cm
n
k

then

V ⊗n+1
1

∼=
⊕

k

Vk ⊗ V1 ⊗ Cm
n
k

∼=
⊕

k

(Vk+1 ⊕ Vk−1)⊗ Cm
n
k

∼=
⊕

k

Vk ⊗ Cm
n
k−1+mnk+1

where we defined mn
−1 = 0 for all n. We find that for n mod 2 = k+ 1 mod 2:

mn+1
k = mn

k−1 +mn
k+1.

16



The multiplicities then follow from this formula and the base case m1
k = δk,1.

We see that for 0 ≤ k < n with n mod 2 = k mod 2

mn
k :=

(
n
n−k

2

)
−
(

n
n−k−2

2

)
,

and mn
n = 1 (and zero otherwise) satisfies the recursion relation since since

mn
k−1 +mn

k+1 =

(
n

n−k+1
2

)
−
(

n
n−k−1

2

)
+

(
n

n−k−1
2

)
−
(

n
n−k−3

2

)

=

[(
n

n−k+1
2

)
+

(
n

n−k−1
2

)]
−
[(

n
n−k−1

2

)
+

(
n

n−k−3
2

)]

Pascal
=

(
n+ 1
n+1−k

2

)
−
(

n+ 1
n+1−k−2

2

)

= mn+1
k

where we used Pascal’s rule. Let us briefly discuss the asymptotic behaviour of
mn
k when n and k are large. Note that

mn
k =

(
n
n−k

2

)
2k + 2

n+ k + 2
. (4)

Note that for all α ∈ [0, 1].

1 = (α+ (1− α))n =

n∑

j=1

αj(1− α)n−j
(
n

j

)

The function f(j) := αj(1 − α)n−j
(
n
j

)
is thus a probability distribution and

peaks when j ≈ nα. This is illustrated in Figure 2.

0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 2: Plot of f(j) := αj(1− α)n−j
(
n
j

)
for α = 0.4 and n = 30.

Let now j0 be an integer. Since there are no more than n + 1 values for j,
we find for α0 := j

n

αj0(1− α)n−j0
(
n

j0

)
≥ 1

n+ 1
.
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or

log

(
n

j0

)
≥ nh

(
j0
n

)
− log(n+ 1).

where h(x) = −x log x − (1 − x) log(1 − x) is the binary entropy function (all
logarithms are to base two).

Conversely (this time for all j, in particular j0)

αj0(1− α)n−j0
(
n

j0

)
≤ 1

or

log

(
n

j0

)
≤ nh

(
j0
n

)

In summary

nh

(
j0
n

)
− log(n+ 1) ≤ log

(
n

j0

)
≤ nh

(
j0
n

)
.

Inserting j0 = (n−k)/2, which is always an integer since n and k have the same
parity:

nh

(
1

2
(1− k

n
)

)
− 2 log(n+ 1) ≤ logmn

k ≤ nh
(

1

2
(1− k

n
)

)

That is, mn
k is growing exponentially in n (if k is linear in n): mn

k ≈
2nh( 1

2 (1− kn ))+O(logn).

5.6 Schur-Weyl Duality

We have seen in the previous section how SU(2) acts on density operators by
rotating the Bloch vector. Let us go one step back and note that SU(2) acts on
vectors in C2 simply by left multiplication, this means that

V1 : SU(2)→ SU(2)

with V1(g) = g. It is clear that all the group operations are preserved and we
therefore have a representation of SU(2). It is called the defining representation
of SU(2). It is easy to verify that it is irreducible.

Recall the n-fold tensor product

V⊗n1 : SU(2)→ SU(2n)

V⊗n1 (g) = g⊗n.

A basis for the space C2⊗n on which this representation acts is given by

|i1i2 . . . in〉 := |i1〉 |i2〉 . . . |in〉 = |i1〉 ⊗ |i2〉 . . . |in〉

18



where {|1〉 =

(
1
0

)
, |0〉 =

(
0
1

)
} is a basis for C2.

There is a second, very natural action on the tensor space. Namely that of
the symmetric group Sn permuting the tensor factors

π |i1 . . . in〉 =
∣∣iπ−1(1) . . . iπ−1(n)

〉
.

This is a representation of Sk since

π′π |i1 . . . in〉 = π′
∣∣iπ−1(1) . . . iπ−1(n)

〉

=: π′ |j1 . . . jn〉
=
∣∣jπ′−1(1) . . . jπ′−1(n)

〉

=: |j`1 . . . j`n〉
=
∣∣iπ−1(`1) . . . iπ−1(`n)

〉

=
∣∣iπ−1(π′−1(1)) . . . iπ−1(π′−1(n))

〉

=
∣∣i(π′π)−1(1) . . . i(π′π)−1(n)

〉

It is easy to see that this action commutes with the action of SU(2) on this
space. Hence, it acts only on the multiplicity space, the space of paths. In fact
it acts irreducibly on each component. This is a consequence of the following
lemma

Lemma 3.

spanC(A⊗n) = {X : [X,π] = 0 ∀ π ∈ Sn}.
Proof. Clearly the LHS is contained in the RHS. We now turn to the proof
that the RHS is contained in the LHS. Note that an X that commutes with all
permutations is without loss of generality of the form X =

∑
π πY π

†. Inserting
for Y the basis element Ei1 ⊗· · ·⊗Ein we find that a basis for the RHS is given
by X = Ei1 ⊗ · · · ⊗ Ein + permutations. This element can be written as

(∏

k

∂

∂tk

)
∑

j

tjEij



⊗n ∣∣∣

t1=···=td=0
.

This proves the claim since partial derivatives are defined as

∂

∂t
(Ẽ + tE)⊗n

∣∣
t=0

= lim
t→0

(Ẽ + tE)⊗n − (Ẽ)⊗n

t
.

This naturally extends to multiple derivatives.8 The RHS is clearly the limit of
a linear combination of tensor powers and thus contained in the LHS.

8

∂

∂t2

∂

∂t1
( ˜̃E + t1E2 + t1E1)⊗n

∣∣
t=0

=
∂

∂t2
lim
t1→0

( ˜̃E + t2E2 + t1E1)⊗n − ( ˜̃E + t2E2)⊗n

t1

= lim
t1,t2→0

( ˜̃E + t2E2 + t1E1)⊗n − ( ˜̃E + t2E2)⊗n − ( ˜̃E + t1E1)⊗n + ( ˜̃E)⊗n

t1t2
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In order to see how irreducibility of [k] follows, first note that the represen-
tation of SU(2) on the tensor space extends to a representation of the matrix
algebra of two-by-two complex matrices, keeping the decomposition into irre-
ducibles intact. Now assume by contradiction that [k] was reducible. Then
[k] ∼= [α] ⊕ [β] for some nonvanishing representations [α] and [β] of Sn. Then,
the projector 1Vk ⊗ Pα onto Vk ⊗ [α] would certainly commute with all per-
mutations and hence be of the form

∑
iA
⊗n
i for some Ai (the sum is finite

wlog). But by the decomposition of V ⊗n1 into irreducible representations, we
find

∑
iA
⊗n
i =

∑
i

⊕
k Vk(Ai)⊗ 1[k] and since the total support is constrained

to Vk ⊗ [k] and since on Vk, the operator is proportional to the identity,

∑

i

A⊗ni =
∑

i

Vk(Ai)⊗ 1[k] = const.1Vk ⊗ 1[k].

This shows that [β] must be zero-dimensional and thus [k] be irreducible. In
summary we find the statement of Schur-Weyl duality : We have the following
decomposition

(C2)⊗n ∼=
⊕

n:k mod 2=n mod 2

Vk ⊗ [k].

where Sn acts irreducibly on [k] ∼= Cmnk and SU(2) acts irreducibly on Vk. If
you have studied the representations of the symmetric group in another course,
you might have come across that they are labelled by Young diagrams with
n boxes, arranged in rows of decreasing length. Here, [k] corresponds to the
two-row Young diagram with n+k

2 boxes in the first, n−k
2 in the second row.

5.7 A basis for Schur-Weyl duality

By implementing the Schur transform above, we can express the basis elements
|k, l, p〉 in terms of the tensor product basis, since Vk ⊗ [k] ⊂ C2⊗n. It turns
out that this is not so easy - just remember how complicated the formula for
the number of paths mn

k is! Let us therefore focus on constructing the |k, l, p〉
for the easy path p̃ = p̃1p̃2 · · · p̃n−1 = −+−+− · · ·+−︸ ︷︷ ︸

n−k−1

+ + · · ·+︸ ︷︷ ︸
k

. The first

minus sign means that we are in the subpace V0 of the first two tensor factors
V1 ⊗ V1, i.e. the state on the first two tensor factors is the singlet 1√

2
|01− 10〉.

The next bit in the path is p̃2 = +. This means that we tensor V1 to V0 and
obtain V0 ⊗ V1 with basis 1√

2
|01− 10〉 ⊗ |1, s〉, s ∈ {0, 1}. (Note that p̃2 = −

was not an option since we cannot decend from the trivial representation). The
next bit is p̃3 = − which means that we once again obtain a singlet and have
V0⊗V0 ⊂ V1⊗V1⊗V1⊗V1 spanned by ( 1√

2
|01− 10〉)⊗( 1√

2
|01− 10〉). Continuing

this procedure we find (n−k)/2 singlets tensored together
(

1√
2
|01− 10〉

)⊗n−k2

.

Vk is then constructed as a subrepresentation of the remaining V ⊗k1 . The vectors
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|k, l〉 that span this representation are explicitly given by

|k, l〉 =
1√(
k
l

)


| 11 . . . 1︸ ︷︷ ︸

l

00 . . . 0︸ ︷︷ ︸
k−l

〉+ permutations


 .

This shows

|k, l, p̃〉 =

(
1√
2
|01− 10〉

)⊗n−k2

⊗ span{|k, l〉 : 0 ≤ l ≤ k}.

There are now two ways of constructing all the other vectors |k, l, p〉.
• Follow different paths just as we have done above. This will yield vectors

orthogonal to the constructed ones, but is a little more tricky, since we
don’t fall back to the trivial representation as was the case for the easy
path p̃.

• Apply the permutation group to the vectors |k, l, p̃〉 that we have con-
structed. Since the action of the permutation group commutes with the
action of SU(2), this will not change k nor l, but will result in superposi-
tions over path labels: π |k, l, p〉 =

∑
p′ ck,l,p,p′ |k, l, p′〉 for numbers ck,l,p,p′

and π ∈ Sn. Be aware that the so constructed vectors are in general not
orthogonal.9

Other (orthogonal) copies of this representation can be constructed by fol-
lowing different paths. Other (not necessarily orthogonal copies) can be obtained
by applying the permutation group to the just constructed representation.

5.8 Measurement of the Total Spin

The measurement of the total spin simply corresponds to an observable that
has as its eigenspaces the projectors onto the isotypic components of Vk in
V ⊗n1 . We have seen how one can construct them explicitly above. Here we want
to give a handy formula for such an observable. In order to do so note that the
representation of SU(2) on the tensor space induces the following representation
of su(2) by derivation:

su(2) 3 a 7→ a⊗ 1⊗ 1⊗ . . .⊗ 1+ 1⊗ a⊗ 1⊗ . . .⊗ 1+ . . .+ 1⊗ 1⊗ . . .⊗ 1⊗ a.

Hence, the total spin (or Casimir operator) for this representation is given by

K2 := ~K. ~K =
∑
iKiKi, where ~K := (K1,K2,K3) and

Ki = σi ⊗ 1⊗ 1⊗ . . .⊗ 1 + 1⊗ σi ⊗ 1⊗ . . .⊗ 1 + . . .+ 1⊗ 1⊗ . . .⊗ 1⊗ σi.
(5)

9As an example, note that application of a transposition of tensor factors one and two does
not result in a new copy of Vk, but that transposing tensor factors two and three results in a
new (non-orthogonal) copy of Vk since 1

16
| 〈01− 10|13 〈01− 10|24 |01− 10〉12 |01− 10〉34 |2 6=

1; subscripts indicate the tensor factor.
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In order to see how the Casimir acts on the space, let us decompose the Ki into
their irreducible components: Ki =

∑
k Vk(σi)⊗ 1[k]. Using (2) we find

K2 =
∑

i

∑

k

vk(σi)vk(σi)⊗ 1[k]

=
∑

k

(∑

i

vk(σi)vk(σi)

)
⊗ 1[k]

=
∑

k

k(k + 2)Pk,

where Pk is the projector onto Vk⊗[k] ⊂ (C2)⊗n. Hence we have a formula, given
through (2) for an observable that measures the total spin in tensor product
space.

For now, we have all mathematical tools together and turn our attention to
some quantum information theory.

6 Entanglement Distillation

6.1 Formal setup

Assume two distant parties Alice and Bob share n copies of the state |ψ〉AB , i.e

the state |ψ〉⊗nAB , which they would like to convert via LOCC, that is, local mea-

surements and classical communication into m ≡ m(n) ebits, i.e. into |φ〉⊗mAB ,
where |φ〉AB = 1√

2
|00 + 11〉AB . We say that R ∈ [0,∞] is an achievable rate if

for all n there exists an LOCC protocol with input |ψ〉⊗nAB and output ρnAB such
that

lim
n→∞

m

n
= R (6)

satisfying

lim
n→∞

〈φ|⊗mAB ρnAB |φ〉⊗mAB = 1. (7)

We are then interested in the maximal achievable rate

Rmax := sup
R
{R achievable}.

Luckily it will turn out that the protocol achieving Rmax not require any
classical communication. Furthermore, a condition somewhat stronger than (7)
is achieved: First note that

|φ2m〉 :=
1√
2m

2m∑

i=1

|i〉 |i〉 ,

and we can therefore equivalently ask Alice and Bob to distill this maximally
entangled state of rank 2m or even of a rank that is not a power of 2, since any
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such state can be converted by LOCC to a state with a rank equal to the next
smaller power of two (majorisation criterion [7]). Also our output will be given
by exact maximally entangled states, but (for fixed n) with a rank given by a
random variable logmn

k sharply peaked around nR. The output state

ρ̃nAB :=
∑

k

pk|k〉〈k| ⊗ |φmnk 〉〈φmnk |

can thus easily be converted into

ρnAB := |φ2nR−O(
√
n)〉〈φ2nR−O(

√
n) |

for which it is clear that both (6) and (7) are satisfied.

6.2 The protocol

The protocol for entanglement distillation is as follows:

• Alice and Bob measure the total spin of the system and thus hold a state
in Vk,A ⊗ Vk,B ⊗ [k]A ⊗ [k]B .

• They trace out Vk,A and Vk,B , respectively. The remaining state in [k]A⊗
[k]B is of the form

∣∣φmnk
〉
.

It remains to verify the claims made in the protocol and to analyse the
performance. Let us start with the former. The state of Alice and Bob is of the
form |ψ〉⊗n and hence it is invariant under the action of the permutation group.
Since the permutation group acts only on the parts [k]A ⊗ [k′]B in

⊕

k,k′

Vk,A ⊗ Vk′,B ⊗ [k]A ⊗ [k′]B ,

and since our state is invariant under the permutation group, it must be con-
tained in ⊕

k,k′

Vk,A ⊗ Vk′,B ⊗ ([k]A ⊗ [k′]B)Sn ,

where the subscript denotes the invariants in this subspace. Since an element
in ([k]A ⊗ [k′]B)Sn can be regarded as an Sn invariant map from [k]A to [k′]B
and since the action on [k] is irreducible, this map can only be proportional to
the identity according to Schur’s lemma, Lemma 2. Equivalently, the state is
proportional to the maximally entangled state. Hence

|ψ〉⊗nAB =
∑

k

ck |ψk〉Vk⊗Vk ⊗
∣∣φmnk

〉
[k]⊗[k]

.

It remains to compute the probabilities |ck|2.

|ck|2 = trPk,A ⊗ Pk,B |ψ〉〈ψ|⊗nAB
= trPk,A ⊗ 1Bn |ψ〉〈ψ|⊗nAB
= trPk,Aρ

⊗n
A ,
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where ρA = trB |ψ〉〈ψ|AB with eigenvalues (r, 1− r) which we assume to satisfy
0 < r < 1

2 (the cases r ∈ {0, 1
2} can easily be verified separately). The second

inequality holds since the state has no component on [k]⊗ [k′] for k 6= k′.

|ck|2 = trPkρ
⊗n
A

= mn
k tr|φ〉〈φ|⊗n−k2 ⊗

(∑

l

|k, l〉〈k, l|
)
ρ⊗nA

= mn
k (r(1− r))

n−k
2

(
k∑

l=0

rl(1− r)k−l
)

(8)

= mn
k (r(1− r))

n−k
2 (1− r)k

k∑

l=0

(
r

1− r

)l

= mn
kr

n−k
2 (1− r)n+k

2

(
1− ( r

1−r )k+1

1− r
1−r

)

≈ mn
kr

n−k
2 (1− r)n+k

2

(
1− r
1− 2r

)

=

(
n
n−k

2

)
r
n−k

2 (1− r)n+k
2

(
2k + 2

n+ k + 2

1− r
1− 2r

)
(9)

≈ const.
(

n
n−k

2

)
r
n−k

2 (1− r)n+k
2

Line (8) follows since we choose the basis {|0〉 , |1〉} as the eigenbasis of ρA. In
order to obtain Line (9) we have inserted Eq. (4). The last line is true for k
which are linear in n – this we can assume as for smaller k, |ck|2 decreases
exponentially.

By the law of large numbers (see also Figure 2), the |ck|2 is highly peaked
for k ≈ n(2r − 1). Using the estimates for mn

k we find

lim
n→∞

E

(
logmn

k

n

)
= h(r).

In other words h(r) ≤ Rmax. That also h(r) ≥ Rmax will be shown in the next
two sections.

6.3 The converse: entanglement dilution

We are now considering the task of entanglement dilution. Here, it is the goal to
construct as many copies of |ψ〉AB as possible per ebit with local operations and
classical communication only. Formally, an achievable rate R for entanglement
dilution satisfies

lim
n→∞

n

m
= R.

and
lim
n→∞

〈ψ|⊗nAB ρnAB |ψ〉
⊗n
AB = 1,
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where ρnAB is the output of the protocol that takes as input m ebits. In Figure 3,
the following protocol is illustrated which achieves a rate R = 1

h(r)+ε (for all

ε > 0).

Figure 3: Circuit for entanglement dilution: Alice creates locally the state |ψ〉⊗nAB
whose B part is merged to Bob by sending O(

√
n log n) bits of (classical or

quantum) communication and the use of ≈ nh(r) ebits.

• Alice locally creates the state |ψ〉⊗nAB and applies the Schur transform to
the A and B parts separately.

• Alice measures the projector Pε =
∑
k∈n[2r−1−2ε,2r−1+2ε] |k〉〈k| and its

complement and continues if she obtains the first outcome (the probability
for this event approaches one for large n, see Figure 2).

• If Alice continues then there are between n(h(r) − O(ε log ε)) + O(log n)
and n(h(r) +O(ε log ε)) path ebits.10

• The n(h(r) − O(ε log ε)) + O(log n) ebits will be exchanged against ebits
shared with Bob, and all the remaining outputs from the Schur transform
on the B systems are teleported to Bob.

• Alice and Bob both apply the inverse Schur transform and obtain the state
ρnAB . 11

10This follows from the inequality |h(x − ε) − h(x)| ≤ h(ε), whose quantum generalisation
is known as Fannes’ inequality.

11The protocol has consumed n(h(r) − O(ε log ε)) + O(logn) ebits for the exchange plus
O(nε log ε) ebits for the teleportation. The teleportation also requires O(nε log ε) bits of
classical communication. Since the peak in Figure 2 is O( 1√

n
) broad, we can choose ε = O( 1√

n
)

and hence O(
√
n logn) bits of communication are sufficient. This can easily be improved to

O(
√
n) which is also optimal [4]. This is to be contrasted to entanglement distillation where

no communication was needed.
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6.4 Optimality

It is the goal of this section to show that the entanglement distillation rate of h(r)
is optimal. The argument is simple: Assume we could perform entanglement
distillation with rate Rmax > h(r). Then we could first convert n ebits into
≈ 1

h(r)n copies of |ψ〉AB and subsequently distill ≈ Rmax
h(r) n ebits.

|φ〉⊗n ≈−→ |ψ〉⊗ 1
h(r)

n ≈−→ |φ〉⊗
Rmax
h(r)

n

So, if Rmax > h(r) we could convert n ebits into ≈ cn ebits, where c > 1!
Note that this would imply in particular an increase in the number of nonzero

Schmidt coefficients from the initial to the final state.12 But this is not possible,
since any local measurement cannot increase the number of nonzero Schmidt co-
efficients of the state (and any allowed operation consists of local measurements
and the transmission of classical information).

In summary, we have shown that R ≤ h(r), which proves that the our proto-
col for entanglement distillation is optimal. By the same token, the achievability
of the entanglement distillation rate of h(r) implies the optimality of the entan-
glement dilution rate of 1

h(r) .

7 Permutational Quantum Computer

7.1 Introduction

In the beginning of this course, we have introduced spin as a property of a
particle and we have argued that this particle has to transform according to
representations of the group SU(2), the covering group of the rotation group in
three dimensional space, SO(3). We have then taken many particles carrying
spin (in fact, we restricted our attention to the representation V1) and studied
how SU(2) transforms the state of those particles. We have also studied the
effect of permuting the particles. It turned out that both actions where maxi-
mal commutants of each other and this led us to introduce a convenient basis in
which to express this action. We have also seen that the representations of the
symmetric group are very large, meaning that the Hilbert space (where the path
information is stored) on which they act, grows exponentially with the number
of particles. It is therefore very natural to ask whether we can perform a com-
putation on the basis states by permuting the particles. This is the subject of
this chapter. The discussion is inspired by the exposition in [6].

From a physical point of view it is a very interesting idea to perform compu-
tation by permutation, since the quantum gates (the transpositions) are robust
in the sense that it does not matter, which exact route the particles follow when
being exchanged but only that they have been exchanged. This would eradi-
cate a typical problem with quantum computers, namely that gates have to be
implemented with high precision.

12n ebits have exactly 2n nonzero Schmidt coefficients.
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7.2 Tree diagrams

We have already seen that the handling of the states |k, l, p〉 is highly non-trivial
and that acting with the permutation group does not make it better. The first
thing we therefore do, is introduce a diagrammatic method that lets us handle
these states a little better.

We will represent the state |k, l, p〉 by the following diagram:

k1

k2

kn-1

1 1 1 1

k1

k,l

Here, time flows downwards and space to the right. Each wire represents a
particle, that is an irreducible representation. When two wires come together
– this is known as fusion – this corresponds to an application of the Clebsch-
Gordan transform. Instead of recording the path label pi (that is whether the
outcome was higher or lower), we record the representation ki that resulted from
the fusion. We indicate the weight of the vector at the bottom of the diagram.
Each distinct label corresponds to a distinct orthonormal state. The following is
a list of the eight orthonormal states that are obtained by fusing three particles:

1 1 1

0

1,0

1 1 1

0

1,1

1 1 1

2

1,0

1 1 1

2

1,1

1 1 1

2

3,0

1 1 1

2

3,1

1 1 1

2

3,2

1 1 1

2

3,3
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Since the Clebsch-Gordan transform as well as the action of the permutation
group cannot change the weight, we will suppress this label in our notation and
think of it as being fixed. More formally, we can eliminate the weight label on
our tree if we regard the tree as an SU(2)-invariant homomorphism from V ⊗n1

to Vk (i.e. the projector onto a specific copy of Vk contained in V ⊗n1 ) that is an
element in Hom(V ⊗n1 , Vk).

7.3 Recoupling

Note that the notation clearly indicates that we started fusing the particles
from the left. Of course we might also consider other orders in which to fuse the
particles. In the example of four particles we have the following possibilities:

The first and familiar fusion order is known as left standard, the third as
the right standard. We want to think of all the lose ends having fixed irre-
ducible representations attached to them. Above we had always considered the
case, where the top row has all labels equals to 1 and the bottom label equals
k (but this restriction is not really necessary). When varying over the path
labels or internal fusion labels, we obtain an orthonormal basis for the space
Hom(V ⊗n1 , Vk). Each choice of fusion order results in a different basis for this
same space.

But how can we transform between two such bases? Since we know how we
obtained them the answer is easy: starting from one basis we first have to undo
the Clebsch-Gordan transforms according to the fusion order of that basis so
that we land in the computational basis. Then we perform the Clebsch-Gordan
transforms corresponding to the new bases. All in all we obtain an expression
of one basis in terms of the other.

But let us do this basis transform slowly at the example of fusing three
particles. Here there are only two bases, the left standard basis and the right
standard basis and we wish to find the transformation between them, known as
the F -matrix:

=

The coefficients are known as recoupling or (Wigner) 6j-coefficients (be
aware of the different normalisations that are in use). Before we state the
recoupling coefficients in terms of the Clebsch-Gordan coefficients (which are
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also known as the (Wigner) 3j-coefficients), let us introduce a notation for the
latter:13

|k1, k2, k, l〉 =
∑

l1,l2

(
k1 k2 k
l1 l2 l

)
|k1, l1〉 |k2, l2〉 .

This allows us to write

|k1, k2, k3, k12, k, l〉left

=
∑

l1,l2,l3,l12

(
k1 k2 k12

l1 l2 l12

)(
k12 k3 k
l12 l3 l

)
|k1, l1〉 |k2, l2〉 |k3, l3〉

as well as

|k1, k2, k3, k23, k, l〉right =

∑

l1,l2,l3,l23

(
k2 k3 k23

l2 l3 l23

)(
k1 k23 k
l1 l23 l

)
|k1, l1〉 |k2, l2〉 |k3, l3〉 .

Hence we obtain
[
k1 k2 k12

k3 k k23

]
:= 〈k1, k2, k3, k12, k, l|left |k1, k2, k3, k23, k, l〉right

=
∑

l1,l2,l3,l12,l23

(
k1 k2 k12

l1 l2 l12

)(
k12 k3 k
l12 l3 l

)

(
k2 k3 k23

l2 l3 l23

)(
k1 k23 k
l1 l23 l

)
,

where we made use of the fact that all the Glebsch-Gordan coefficients are real.
It is easy to see that recoupling moves are sufficient to transform any basis into
any other basis. Note that for given k1, k2, k3 and k, the matrix F with elements[
k1 k2 k12

k3 k k23

]
is unitary. Since the coefficients are furthermore real we find

F−1 = F † = FT where T denotes the transpose. In other words

∑

k12

[
k1 k2 k12

k3 k k23

] [
k1 k2 k12

k3 k k′23

]
= δk23,k′23

and ∑

k23

[
k1 k2 k12

k3 k k23

] [
k1 k2 k′12

k3 k k23

]
= δk12,k′12

This implies

13In the notation of Section 5.3 we have 〈k1l1| 〈k2l2| |k, l〉 ≡
(

k1 k2 k
l1 l2 l

)
and moreover

we calculated the Glebsch-Gordan coefficients for the special case k2 = 1 there.

29



=

since

Modifying the lines in the diagram a bit, we see why this process is also known
as recoupling:

=

7.4 Permutation

This section is guided by the question of whether the permutation of particles
can be used to perform useful computation.

An entire permutation can be viewed as a permutational circuit, graphically
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The transposition of particle i and i+ 1 is denoted by πi and represented as

πi 7→ 1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


⊗ 1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

n−(i+1)

when expressed in terms of the computational basis.
In the remainder of this section we want to express this transposition in terms

of the tree bases. Let us start step by step and consider first the case where two
particles fuse. When both particles are of type one and fuse to zero then they
are in a singlet. An exchange of the particles will therefore result in a minus
sign. When the particles fuse to a 2, they are in the triplet and an exchange
does not change the state at all. Represented graphically, we summarise

This argument can be generalised to an exchange of particles of types k1 and
k2 that fuse to k

.

So, if we want to compute the effect of exchanging particles one and two in
a basis state of the left standard basis this not a problem, we just pick up a
minus sign if they fuse to 0 and a plus sign if they fuse to 1.

But what do we do when we want to permute any of the other particles? We
first use recoupling moves in order to transform one basis into a basis where the
particles fuse directly, we then apply the permutation, and then we undo the
recoupling moves. Let us do this explicitly with the example of the left standard
basis.
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Note that with only one recoupling move we have obtained the desired position.
Hence, the transposition πi is represented by a single qubit unitary acting on ki
controlled by ki−1 and ki+1:

πi 7→ bi

where bi is given by the circuit
k1 k1
k2 k2

...
...

...

ki−3 ki−3
ki−2 • ki−2

ki−1 b k′i−1

ki • ki
ki+1 ki+1

...
...

...

kn−1 kn−1
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where the coefficients of the matrix b are

b
ki−2,ki
k′i−1,ki−1

=

[
ki−2 1 ki−1

1 ki 2

] [
ki−2 1 k′i−1

1 ki 2

]

−
[
ki−2 1 ki−1

1 ki 0

] [
ki−2 1 k′i−1

1 ki 0

]
.

Note that each wire carries states of dimension at most n, hence our permutation
acts on a n3 dimensional system. As we will see below, such a unitary can be
decomposed in poly(n) CNOT and single qubit gates. This shows that we can
simulate our permutational computation model as a standard quantum circuit
(with only polynomial overhead).

Two remarks are in order that show how limited the power of this compu-
tational model is. First, note that each permutation corresponds to a circuit
and that each circuit corresponds to a permutation. We will see in the exercises
that every permutation in Sn can be realised with only O(n2) transpositions.
Therefore, arbitrary permutational circuits can be simulated with a circuit of
size poly(n). Hence, in this computational model, any circuit is an efficient
circuit. More aspects of the complexity theory of this model are discussed in
[6]. Second, note that we cannot realise any unitary transformation (not even
on a subspace) by a sequence of permutations, since there are infinitely many
unitaries but only n! different permutations. We therefore say that the model
is not universal for quantum computation. In the following section we will
make an excursion into the circuit model, in order to understand the concept
of universality in more detail.

8 The Circuit Model is Universal for Quantum
Computation

After having seen that the permutational model is not universal for quantum
computation, it is our goal to show that the circuit model indeed is. This would
provide a nice justification for the use of the circuit model in the first place,
something we have already done at different place int his course.

Recall the CNOT gate

c
CNOT

c

t c⊕ t
=̂ c • c

t �������� c⊕ t

and the single qubit gates, which are gates acting on one qubit only.

Theorem 4. The CNOT gate together with arbitrary single qubit gates are
universal for quantum computation. More precisely, any d× d unitary U can be
written in the form

U = U1U2 · · ·Uk,
where the Uj are one-qubit or CNOT gates and k is a finite number bounded by
poly(d).
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Proof. The proof consists of two steps. In a first step, we will decompose U into
so-called two-level unitaries that is unitaries that affect two basis vectors only.
In a second step, we will decompose those in terms of CNOT and single qubit
unitaries.

We consider an arbitrary unitary

U =




a ∗ ∗ · · ·
b ∗ ∗ · · ·
c ∗ ∗ · · ·
...

...
...

. . .




Upon multiplying U from the left with the two-level unitary

U†1 :=




ā√
|a|2+|b|2

b̄√
|a|2+|b|2

0 · · · 0

b√
|a|2+|b|2

−a√
|a|2+|b|2

0 · · · 0

0 0 1 · · · 0
...

...
...

. . .

0 0 0 . . . 1




we find

U†1U =




a′ ∗ ∗ · · ·
0 ∗ ∗ · · ·
c′ ∗ ∗ · · ·
...

...
...

. . .


 .

We then multiply again from the left with

U†2 :=




ā′√
|a′|2+|c′|2

0 c̄′√
|a′|2+|c′|2

0 · · · 0

0 1 0 0 · · · 0
c′√

|a′|2+|c′|2
0 −a′√

|a′|2+|c′|2
0 · · · 0

0 0 0 1 . . . 0
...

...
...

...
. . .

0 0 0 0 . . . 1




and find

U†2U
†
1U =




a′′ ∗ ∗ · · ·
0 ∗ ∗ · · ·
0 ∗ ∗ · · ·
d′′ ∗ ∗ · · ·
...

...
...

. . .



.

We continue this way until all but the first element in the first column vanish.
Since all matrices involved are unitary, this first element must be of modulus
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one and the remaining elements in the first row must vanish. After adjusting
the phase of the first element we find




1 0 0 · · ·
0 ∗ ∗ · · ·
0 ∗ ∗ · · ·
...

...
...

. . .


 .

We then perform the same procedure on the smaller block and continue until
we obtain the identity, i.e.

U†`U
†
`−1 · · ·U

†
1U = 1,

which shows that U can be decomposed into ` ≤ d(d+ 1)/2 two-level unitaries:

U = U1 · · ·U`.

We will now show how an arbitrary two-level unitary V can be implemented
with single qubit operations and the CNOT gate. By definition, V acts non-
trivially on at most two basis vectors. Without loss of generality, let it act
non-trivially on exactly two vectors from the computational basis indexed by
s = s1 · · · sn and t = t1 · · · tn where n is the smallest integer such that the
dimension of the unitary U is smaller than or equal to 2n. When s and t differ
in only one position, the two-level unitary is a single qubit operation. It is thus
our aim to transform s into a vector s′ which differs only in one position with t,
then apply a single qubit operation and then transform the vector back again.
Let c be the number of positions in which s and t are different. By changing
one after the other the bits in s that differ from the ones in t we obtain c − 1
vectors s = s(0), s(1), · · · , s(c−1) = s′, t, a set of vectors called a Gray code.

Example 1.
s = s(0) = 01011001001

s(1) = 01111001001
s(2) = 01110001001
s(3) = 01110101001

t = s(4) = 01110101011

We can swap the vectors s(i) and s(i+1) with the following circuit, where
we control on the bits where s(i) and s(i+1) are equal (the open bullet means
conditioning on 0). The target is the index, where the two strings differ:

��
��	
�
•��������

...
...

•
(here s

(i)
1 = 0, s

(i)
2 = 1, s

(i)
n = 1 and s

(i)
3 6= s

(i+1)
3 ). After c− 1 such circuits we

apply the single qubit gate, which is defined by the two-level unitary, on the bit

35



where s′ and t differ controlled by all other bits of s′. Subsequently, we undo
the swaps.

It remains to be shown that we can implement multiply controlled single
qubit gates with help of single qubit gates and CNOT gates. This was done in
the exercises.

This shows that the circuit model is universal for quantum computation.

9 Topological Quantum Computer

9.1 Particles in two and three dimensions

When we exchange two particles twice in clockwise direction this corresponds to
winding one particle around the other. As a physical operation this operation
should have a unitary matrix as its mathematical equivalent. In three space
dimensions, however, the path winding one particle around the other is easily
seen to be contractible to the trivial path that leaves both particles where they
are. This implies that the unitary matrix corresponding to a double particle
exchange must equal the identity matrix and this again shows that the unitary
matrix representing particle exchange can only have eigenvalues one and minus
one. And indeed this is what we had found above

This argument can be related to a rotation around itself, something we have
discussed in the beginning of the course in the context of the double cover SU(2)
of the rotation group SO(3), but we will not discuss this connection in more
detail in this course. The interested reader is referred to John Preskill’s lecture
notes and his remarks about the relation between spin and statistics.

Interestingly, particle exchange is different in two dimensions. Here, a path
of one particle around the other cannot be deformed into the trivial path and
hence does not have to be represented by the identity matrix. In consequence,
particle exchange in a two-dimensional world may be represented by a unitary
matrix that does not only have eigenvalues one or minus one (or equivalently
exchange phases of 0 or π) but may have any phase. In analogy to bosons and
fermions, such particles are called anyons.

In our three-dimensional world we cannot hope to have elementary parti-
cles that behave like anyons, even if we confine them two a two-dimensional
surface since we could always remove the confinement. In certain materials,
however, we may hope to see quasi-particles (or excitations) that behave like
anyons. There are several candidate materials having anyonic excitations, most
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famously the two-dimensional electron gases exhibiting the fractional quantum
Hall effect. Mathematically easier to understand are the anyonic excitations in
several lattice models, mostly generalisations of Kitaev’s toric code.

Rather than discussing a specific model, we will introduce a general frame-
work in which all such models can be treated, but before let us take a look at
the braid group, the group governing the exchange of anyons.

9.2 The braid group

So what could we do if we had anyons at our hand? We have argued above
that exchanging anyons twice in the same direction, for instance clockwise, is
not the same as doing nothing. In other words, exchanging particles clockwise
or counterclockwise may make a difference in two spatial dimensions. We may
therefore represent a clockwise exchange of particles by the following diagram

which replaces our particle exchange in the three-dimensional world where clock-
wise and counterclockwise exchange were identical.

In three dimensions, the exchange of n particles was governed by the symmetric
group Sn acting on n strands - in two dimensions the relevant group is the
braid group Bn. Let τi, i = {1, . . . , n− 1} be the generators of the braid group
on n strands exchanging strand i and i + 1 in clockwise manner. The braid
group is then characterised by the following set of algebraic relations: When
two exchanges act on entirely different strands then

τiτj = τjτi |i− j| ≥ 2 (10)

whereas when they have a strand in common the following relation holds

τiτi+1τi = τi+1τiτi+1 (11)

Represented graphically for three-strand braids it reads

.

Note that the symmetric group has one relation in addition, namely

(τi)
2 = e (12)
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where e is the identity element.
Since the symmetric group Sn has only n! different elements we had seen

above that exchanging particles in three dimensions cannot lead to a universal
model for quantum computation. This argument does not hold anymore for
particles in two dimensions since we can easily see that the braid group Bn has
an infinite number of elements. Even for two strands every additional exchange
of the strands (in the same direction) results in a new braid.

.

So there is the hope that we may perform universal quantum computation (or
at least a very good approximation of it, since with a discrete number of braids
we can certainly not get an arbitrary unitary exactly) by braiding particles with
a circuit looking like this:

.

But in order to have a quantum mechanical particle model, it is not sufficient
to play around with strands. We need a representation of the braid group. Let
us recall how we obtained the representations of the symmetric group in the
attempt to generalise this approach. Here, each strand was represented by a
vector space V ∼= C2 (we disregard that this space was endowed with an action
of SU(2)) and the symmetric group was acting as

Sn 3 πi 7→ 1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


⊗ 1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

n−(i+1)

when expressed in terms of the computational basis. This action may easily be
generalised to arbitrary local dimensions. Since it is a representation of Sn, the
matrices fulfill equations (10) (11) and (12). It is then natural to ask if we can
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find a modification of 


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




that violates (12), but still satisfies (10) and (11)? In other words, can we find
a non-trivial representation of the braid group by deforming particle exchange?
Formally, we are looking for an element b : V ⊗ V → V ⊗ V that satisfies the
following equation, known as the Yang-Baxter equation

b12b23b12 = b23b12b23. (13)

Each side of the equation acts on V ⊗V ⊗V and the subscript of b indicates on
which two tensor factors b acts.14 It is indeed possible to find representations
of the braid group this way – and it is also possible to generalise Schur-Weyl
duality to the braid group and its dual, but unfortunately this is not so easy. We
therefore choose a different route: we will build anyon models directly. Luckily
we are well-prepared for this endeavour!

14Sometimes, the following different equation is called the Yang-Baxter equation

R23R13R12 = R12R13R23, (14)

where R : V ⊗ V . The element b and R are then related by a permutation:

b = πR

where π is the exchange operator on V ⊗ V , i.e.

π =
∑
k,l

|l〉 〈k| ⊗ |k〉 〈l|

It remains to verify that (13) is equivalent to (14)

b12b23b12 = b23b12b23

The LHS equals

b12b23b12 = π12R12π23R23π12R12

= π12R12π23π12R13R12

= π12π23R13π12R13R12

= π12π23π12R23R13R12

= π13R23R13R12.

The RHS equals

b23b12b23 = π23R23π12R12π23R23

= π23R23π12π23R13R23

= π23π12R13π23R13R23

= π23π12π23R23R13R23

= π13R23R13R23

and hence the statement is equivalent to (14).
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9.3 Anyon models

An anyon model, sometimes known as a braided tensor category, is given by the
following set of data:

• Particle types are labeled by elements from a discrete (mostly finite) set,
for instance {0, 1, 2, . . .}.

• Fusion rules tell us the possibilities of the outcomes when two particles,
k1 and k2, are fused.

k1 × k2 =
∑

k

Nk
k1,k2k

where Nk
k1,k2

is the number of different ways in which two particles fuse
to a particular third particle. Not to clutter our notation, we will only
consider fusion rules where there is at most one way, i.e. Nk

k1,k2
∈ {0, 1}.

• Braiding rules tell us what happens when particles are being exchanged.
Braiding of two particles does not affect the particle to which they fuse,
hence

,

where Rkk1,k2 = eiΘ
k
k1,k2 is a phase factor.

• The F -matrix relates the different orders in which particles can be fused.

Of course there are some consistency requirements that this data set has
to satisfy in order to be an anyon model. But let us first look at our SU(2)
example:

Example 2. SU(2)

• Particle types are the different values of spin, in our case labelled by a
non-negative integer, 0, 1, 2, etc.
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• The fusion rule is

k1 × k2 =

k1+k2∑

k=|k1−k2|:k mod 2=k1+k2 mod 2

understood as abbreviating Vk1 ⊗ Vk2 =
⊕
Vk. In general, there must not

be any vector spaces associated with a certain particle type and the fusion
rule does have to arise as a representation of a group.

• The braiding rules correspond to definite phases when two particles that
fuse to a certain particle are being exchanged. In our case these complex

numbers are Rkk1,k2 = (−1)
k1+k2−k

2 . In general these may be any phases.

• The 6j-coefficients that we have computed from the Clebsch-Gordan coef-
ficients are the entries of the F -matrix.

(F kk1,k2,k3)k23,k12 =

[
k1 k2 k12

k3 k k23

]
.

Since we can have anyons without an underlying group, in general there
may not be any Clebsch-Gordan coefficients but only an F -matrix.

9.4 The Pentagon and Hexagon equations

The following three equations – written in diagrammatic form and known as
pentagon and hexagon equations – provide consistency conditions on the F and
R-matrices.
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MacLane’s coherence theorem tells us that for an anyon model to be consis-
tent it is sufficient that these three equations are satisfied.

9.5 Fibonacci anyons

The model we wish to construct has two distinct types of particles called 0 and
1 which obey the following fusion rules

0× 0 = 0 0× 1 = 1 1× 0 = 1 1× 1 = 0 + 1.

Is there an F -matrix and an R-matrix compatible with these rules? Or are there
even several different ones? In order to find out, we first solve the pentagon
equation and find

F ≡ F 1
111 =

(
τ eiϕ

√
τ

e−iϕ
√
τ −τ

)
,

42



where τ =
√

5−1
2 = φ− 1 ≈ 0.618 and φ is the golden ratio. F δαβγ = 1 if at least

one of the indices equals 0. To make life easier let us fix ϕ = 0. Solving the first
hexagon equation then gives

R =

(
ei

4π
5 0

0 e−i
3π
5

)

and this turns also out to be consistent with the second one. Up to fixing the
phase ϕ and exchanging the phases in the R matrix, this solution is unique. Let
Nα
n be the number of paths when we fuse n anyons in the left standard basis

and the final fusion label is α. Then

N0
n = N0

n−2 +N1
n−2

and since N1
n−2 = N0

n−1 we find

N0
n = N0

n−2 +N0
n−1.

With the base cases N0
2 = 1 and N0

3 = 1 we find that N0
n = Fib(n − 1), the

n − 1’th Fibonacci number. This property gives the model its name and it
follows from a formula for the Fibonacci numbers that

N0
n ≈

φn−1

√
5

= 2O(n).

The model therefore provides us with a large enough Hilbert space to do useful
quantum computation.

9.6 The Fibonacci anyons are universal for quantum com-
putation

We have seen in Chapter 8 that the circuit model is universal for quantum com-
putation. Rather than showing directly that the Fibonacci model is universal
for quantum computation, we will show that within the Fibonacci model we are
able to simulate the circuit model. The work splits into two parts:

1. Encode qubits into fusion paths. The encoded qubits are known as logical
qubits.

2. Construct braids that act as single qubit and CNOT operations on logical
qubits.

1) We encode a single qubit into the two basis states of four anyons
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By concatenating the trees n times, we can encode n qubits into 4n anyons:

2) When braiding the first and the second anyon the corresponding unitary
transform on the first logical qubit is given by the R matrix

τ1 7→ R

In order to compute how braiding anyon two and three affects the logical qubit,
we first need to carry out an F -move, then apply the R matrix and then invert
the F -move. All in all

τ2 7→ B := FRF−1.

This generalises immediately to the following action on the i’th logical qubit

τ4i−3 7→ R

τ4i−2 7→ B.

In the exercise we have seen how one can obtain any single qubit operation by
a specific iteration of F and B.

Freedman, Larsen and Wang have generalised this observation and shown that
by braiding n anyons one can approximate any unitary matrix (disregarding an
overall phase factor) acting on the path labels, i.e. we can approximate all of
SU(N0

n). When braiding 8 anyons we can therefore approximate any element in
SU(13), but in particular any element – especially the CNOT gate – of SU(4)
acting on the logical qubits |α1〉 |α2〉.
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This concludes the proof that the Fibonacci model can simulate the circuit
model. Admittedly, such a simulation would be rather useless if an efficient
circuit would be turned into an inefficient one by the simulation. So, we need
to show that this is not the case. If we could simulate our single qubit and
CNOT gates perfectly with only a finite number of gates, say c, then a circuit
with m gates would be transformed into a braid with cm particle exchanges.
Unfortunately, we can only approximate our gates with the braids which makes
things a little more tricky.

Assume that we wish to simulate a circuit

U = Um · · ·U1

consisting of m gates by a braid

V = Vm · · ·V1

that is obtained by replacing every gate Ui in the original circuit by its ap-
proximating braid Vi. Assume we are happy to tolerate a total error ε > 0,
i.e.

||U − V || ≤ ε,
where ||X|| := sup|ψ〉:〈ψ|ψ〉=1 | 〈ψ|X |ψ〉 | is the operator norm of a matrix X.
Then it follows from the triangle inequality that

||U − V || = ||Um · · ·U2U1 − Vm · · ·V2V1||
= ||Um · · ·U2U1 − Um · · ·U2V1 + Um · · ·U2V1 − Vm · · ·V2V1||
≤ ||Um · · ·U2U1 − Um · · ·U2V1||+ ||Um · · ·U2V1 − Vm · · ·V2V1||
= ||U1 − V1||+ ||Um · · ·U2 − Vm · · ·V2||
...

≤
m∑

i=1

||Ui − Vi||.

In general the use of the triangle inequality is tight and therefore, in order to
get an error of ε for the entire circuit an error of at most ε/m is required for
every individual gate. It can be shown that a gate can be approximated to
error δ with a braid of length O(1/δ)15. Setting δ = ε/m we see that we can
simulate a circuit consisting of m gates with a total error of ε with a braid of
total length O(m2/ε). A circuit that is of polynomial size in the input length
– that is efficient – will therefore be transformed into a braid that is also of
polynomial length in the input. A fundamental result in quantum computation,
the Solovay-Kitaev theorem, states that this result can even be improved and
that only a circuit of size O(m logc mε ) is needed, where c is some constant
between one and two.

15For a related argument that shows that single qubit gates can be approximated by the
π/8 gate and the Hadamard gate see Nielsen and Chuang
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9.7 Simulating the Fibonacci model within the circuit model

Just as we were able to simulate the permutational quantum computer in the
circuit model, we can simulate the Fibonacci model within the circuit model.
This is easily seen by noting that the action of the braid group on the path
labels takes the following form: The generator τi is mapped to

k1 k1
k2 k2

...
...

...

ki−3 ki−3
ki−2 • ki−2

ki−1 b k′i−1

ki • ki
ki+1 ki+1

...
...

...

kn−1 kn−1

where the coefficients of the matrix b are easily calculated from the F and R
matrices. A braid can thus be seen as a circuit consisting of three-qubit gates
which can be expressed exactly as single qubit and CNOT gates. This argument
can readily be generalised to any other anyon model.

9.8 Truncating SU(2)

Unfortunately, the most natural algorithm for the topological quantum com-
puter is not formulated for the simple Fibonacci anyon model, but for the fol-
lowing, more complicated, models.

These are truncations of the SU(2) ”anyon“ model we have studied. For
each truncation parameter k ∈ N, the anyon model called SU(2)k has particle
labels {0, 1, . . . , k} and fusion rules just as in SU(2):

r1 × r2 =

min(r1+r2,2k−r1−r2)∑

r=|r1−r2|:r mod 2=r1+r2 mod 2

r

Example 3. SU(2)2 has fusion rules

1× 1 = 0 + 2

1× 2 = 1

2× 2 = 0.

All other rules follow from 0 being the trivial label.

The F - and R-matrix are not unique given these fusion rules, but there
is a solution that can be obtained by deforming the SU(2) Clebsch-Gordan
coefficients (see J. Slingerland’s PhD thesis, University of Amsterdam). The
resulting model is known as SU(2)k (in words: SU(2) at level k).
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9.9 Knots, Links and Braids

A knot is a closed non-intersecting curve in R3.

Instead of working with knots we choose to work with links, that is with curves
in R3 consisting of several knots.

knots and links quantum complexity braids approximation computing with braids complexity

What is a knot?
• A knot is a closed nonintersecting curve in R3

• A link is a knot with many components

• Links are the equivalent (isotopic) if they can be deformed
into one another

�

A link may be oriented by assigning a direction to each of its components. Two
links are equivalent (isotopic) if they can be deformed into each other.

Problem: Given two (oriented) links, are they equivalent?

knots and links quantum complexity braids approximation computing with braids complexity

What is a knot?
• A knot is a closed nonintersecting curve in R3

• A link is a knot with many components

• Links are the equivalent (isotopic) if they can be deformed
into one another

�

In order to have a better handle on links, we will represent links by projecting
them to R2 but recording which of two strands goes above the other in a crossing.

knots and links quantum complexity braids approximation computing with braids complexity

Fundamental problem

• Do two descriptions describe equivalent links?
• How to describe a link?
• Link diagrams:

Theorem: Two link diagrams represent equivalent links if

they are connected by a sequence of Reidemeister moves:

←→ ←→

��
��

��
��

��
�

��
�

←→
��

��
��

��
��

�

��
�

• Problem: may have to introduce many more crossings
- no polynomial upper bound known

It turns out that two links are equivalent if and only if their representations are
related by Reidemeister moves.
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knots and links quantum complexity braids approximation computing with braids complexity

Fundamental problem

• Do two descriptions describe equivalent links?
• How to describe a link?
• Link diagrams:

Theorem: Two link diagrams represent equivalent links if

they are connected by a sequence of Reidemeister moves:

←→ ←→

��
��

��
��

��
�

��
�

←→
��

��
��

��
��

�

��
�

• Problem: may have to introduce many more crossings
- no polynomial upper bound known

Unfortunately, applying Reidemeister moves to test equivalence is a computa-
tionally costly business, as there is no polynomial upper bound on the number
of additional crossings known.16

A different way to test equivalence is to associate an invariant to each link,
that is an algebraic object (e.g. a number, a polynomial) that stays invariant
under smooth deformations of the link. If two links have different objects associ-
ated to them, then they cannot be equivalent. Most invariants are, however, not
complete, meaning that there are inequivalent links that have identical objects
associated to them.

It is our goal to associate an invariant number to each oriented link. We will
do this by associating a specific number to a braid. So, we first have to establish
a connection between links and braids:17

most k through-strings, we have TL(k, n, δ)TL(n, m, k, δ) ⊆ TL(k, m, k, δ).
Thus Vn,m = TL(n, m, m, δ)/TL(n, m, m − 1, δ) is a TL(n, δ−2)-module, a
basis of which is given by (m, n)-diagrams with m through-strings (m ≤ n).
The number of such diagrams is

(
n
m

)
−

(
n

m−1

)
and it follows from [19] that all

these representations are irreducible for “generic” δ (i.e. δ $∈ {2 cosQπ}) and
that they may be identified with those indexed by Young diagrams as below:

Vn,m ←→ ← m

← n − m

The invariant inner product on Vn,m is defined by 〈v, w〉 = w∗v for the
natural identification of Vm,m with C (∗ is the obvious involution from (m, n)
diagrams to (n, m) diagrams.)

4 The original definition of VL(t)

Given a braid β ∈ Bn one may form an oriented link β̂ called the closure
of β by tying the top of the braid to the bottom as illustrated below:

β = −→ β̂ =

All oriented links occur in this way ([5]) but if α ∈ Bn, αβα−1 and βσ±1
n (in

Bn+1) have the same closure.

Theorem 1 (Markov, [5]) Let ∼ be the equivalence relation on
∐∞

n=1 Bn

(all braids on any number of strings) generated by the two “moves” β ∼ βσ±1
n

and β ∼ αβα−1. Then β1 ∼ β2 if and only if the links β̂1 and β̂2 are the
same.

It is easily checked that, if 1, e1, e2, e3, . . . satisfy the TL relations of §3
then sending σi to (t+1)ei−1 (with τ−1 = 2+t+t−1) defines a representation

11

We say that two braids β and β′ are equivalent if β′ = αβα−1 or β′ = βτ±1
n (in

Bn+1).

Theorem 5 (Alexander). Every oriented link can be written as a closure of a
braid.

Theorem 6 (Markov). Two oriented links are equivalent if and only if the
corresponding braids are equivalent.

We write the closure operation in the following way:

16Note that one of the moves corresponds to the Yang-Baxter equation.
17The following graph is taken from [5].
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9.10 A quantum algorithm for approximating the Jones
polynomial

We interpret the top part as the input state |ψ〉:

Denoting the entire braid by β̃ and the corresponding unitary by Uβ̃ , we asso-
ciate the probability of obtaining outcome |ψ〉,

p := | 〈ψ|Uβ̃ |ψ〉 |2,

to the link. By Markov’s theorem (and the fact that we have a representation
of the braid group), this number is an invariant under smooth deformations of
the link. When working in the anyon model SU(2)k, this number is usually
denoted by

p =
|J(β̂, e

i2π
k+2 )|2

|J(n unknots, e
i2π
k+2 )|2

where J(β̂, q) (q ∈ C) is the Jones polynomial, a famous invariant of ori-

ented links. The right hand side is between 0 and 1, because |J(β̂, e
i2π
k+2 )| ≤

|J(n unknots, e
i2π
k+2 )|.

By running our anyon computer n times with this input and braid, we obtain
a sequence of independently and identically distributed random variables. Each
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random variable takes value 1 with probability p and value 0 with probability
1 − p. By the law of large numbers (here in its incarnation by Hoeffding), for
all δ > 0,

Prob (|Xn − p| > δ) = Prob

(
|Xn − |J(β̂, e

i2π
k+2 )|2

|J(n unknots, e
i2π
k+2 )|2

| > δ

)
≤ e−2nδ2 ,

where Xn :=
∑n
i=1Xi
n is the observed average outcome of the measurement.

In order to approximate the normalised Jones polynomial to accuracy δ > 0
(with arbitrarily high probability) one therefore needs a number of operations
that is efficient (i.e. polynomial) in the number of crossings with which the

braid is represented. But how good an approximation of J(β̂, e
i2π
k+2 ) is it? In

order to find out we first need a proper definition of the Jones polynomial.

9.11 Jones polynomial

We have seen that the values of the Jones polynomial at roots of unity appeared
very naturally in our setup. In fact, Jones came to discover his polynomial in a
way very similar to this. Instead of certain anyon models he used the concept of
a Hecke algebra (which depends on a parameter q ∈ C) on which he represented
the braid group.

Researchers have also used an inductive definition of the Jones polynomial
via skein relations:

where the arguments in the equation on the right stand for links that are iden-
tical except one crossing, which is shown as argument. This way of defining the
Jones polynomial has a two-variable generalisation, the HOMFLYPT polyno-
mial. Both ways of defining the Jones polynomial are discussed in [5].

For a calculation of the normalisation constant we use the second definition
of the Jones polynomial and find

|J(n unknots, e
i2π
k+2 )| =

(
2 cos

π

k + 2

)n−1

.

which is exponentially increasing in n for k ≥ 2.18 Hence, our algorithm does
not give a good approximation of the Jones polynomial itself, but only its nor-
malised version. This may be slightly disappointing, but we should still keep in
mind that the algorithm we constructed is exponentially faster than any known
classical algorithm for this problem.

18The website http://library.thinkquest.org/12295/data/Invariants/Articles/

Jones.html computes the Jones polynomials of a few links explicitly.
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9.12 Complexity theory

In order to put our algorithm for approximating the Jones polynomial into
perspective, we will take a detour and say a few words about complexity theory.

In complexity theory, functions whose input is a bit string that depends on
a length n are grouped into complexity classes according their computational
difficulty, viz. according to the minimal number of gates required in a circuit
for f , asymptotically.

Informally, the two most prominent complexity classes can be defined as
follows.

• The complexity class P consists of all problems that can be computed with
circuit of polynomial size in the length of the input.

• The complexity class NP (Nondeterministic Polynomial-Time) consists of
the problems such that a possible answer to an input of length n can be
verified with a circuit of polynomial size.

Note that P ⊆ NP . It is the biggest open problem in theoretical computer
science, whether or not P = NP , but it is strongly conjectured that P 6= NP .
Examples of problems in P are

• Multiplying: multiply two integers of combined bit length n (of which
degree is the polynomial g(n) which is implied by the algorithm that you
learned in primary school?)

• Primes: determining whether or not an n-bit number is prime

Problems in P are called efficient. Note that this is the definition of the word
efficient in computer science. Intuitively, we may only want to think of problem
as efficient if it is O(n), O(n2) or maybe O(n3). Interestingly, most relevant
problems in P have a low exponent and thus our intuition of efficient sort of
coincides with the definition of P. Note also that someone performing actual
calculations on a computer, does not have arbitrary resources and hence he may
consider a program with runtime 0.00001 × 2n as being more efficient as one
with 1010 × n2. The constant that we wipe under the carpet in our theoretical
analysis may therefore be very relevant in practice.

Problems in NP that are not known to be in P are

• Factoring: factor an n-bit number into its primes (this problem is clearly
in NP, since multiplying is in P)

• Traveling Salesman: determine the shortest route between a number of
cities such that every city is visited exactly once.

• SAT: given a Boolean formula, i.e. a formula containing ∨,∧,̄ , brackets
and variables, is there an assignment of the Boolean variables xi such that
the formula is true?
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Figure 4: Problems in the complexity classes P, BQP and NP. A problem shown
on the border of a complexity class is complete for this class.

A problem is NP-hard, if, given a black box (or oracle) that solves the problem,
we can solve any other problem in NP in polynomial time. A problem is NP-
complete if it is in NP and NP-hard. It is the famous Cook-Levin theorem that
asserts that SAT is NP-complete. NP-complete problems are hence the most
difficult problems in NP. For an illustration see Figure 4.

The most important result in quantum complexity theory is Shor’s fac-
toring algorithm, which shows that factoring is efficient on a quantum com-
puter, whereas we do not know of an efficient classical algorithm for the prob-
lem. The best known classical algorithm (general number field sieve algo-

rithm) runs in time O
(

exp
(

( 64
9 n)

1
3 (log n)

2
3

))
. Factoring is thus in NP and

in BQP (bounded-error quantum polynomial time), the quantum analog to P.
There are also many other complexity classes; for a good overview see http:

//qwiki.stanford.edu/index.php/Complexity_Zoo. Let me highlight one
more class, known as #P (pronounced ”sharp“-P). Whereas NP consists of all
problems for which a given solution is easily verified, #P consists of all problems
which can be represented as counting the number of solutions to a problem in
NP. Counting problems are considered to be much more difficult than problems
in P or NP although formally it is an open problem to prove that #P is different
from NP or P.

In this course, we have seen that approximating the Jones polynomial is in
BQP, that is, we have exhibited a quantum algorithm that can approximate
the Jones polynomial in time polynomial in the number of crossings of the link.
This is already exciting as we do not know of a classical algorithm for this
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problem. More so, the problem turns out to be BQP-complete, that is, the
most difficult problem in BQP. Formally, this means that given access to an
oracle that approximates the Jones polynomial, we can solve any other problem
in BQP in polynomial time on a classical computer. Let us see how this works:

A problem in BQP has by definition a polynomially-sized circuit that solves
it. Encode this quantum circuit into a braid. Then the probability for the
circuit returning the answer yes19 can be expressed as the (normalised) Jones
polynomial of the braid. Hence, if we have an oracle that approximates the
Jones polynomial, we can approximate the probability of the answer yes of the
quantum circuit and hence solve the problem.

This has an interesting consequence for factoring integers (or any other prob-
lem in BQP for that matter): If we had an efficient classical algorithm that ap-
proximates the Jones polynomial, we could regard this algorithm as our oracle
and use it to convert Shor’s efficient quantum algorithm for factoring into an
efficient classical algorithm.

As shown in the figure, calculating the Jones polynomial rather than its nor-
malised version is #P-complete. Since #P is not believed to be equal to P (nor
BQP), calculating the Jones polynomial can be regarded as computationally
intractable.
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