Path integral formalism

(script sections 2 and 3)

Contents

A	Motivation	1
В	Path integral in QM (script section 2.1)	2
\mathbf{C}	Path integral for scalar QFT (script section 3)	3
D	Greens functions (script section 2.2 and 2.4 but for fields)	3
\mathbf{E}	Generating functional $\mathbb{Z}[J]$ (script sections 2.2 and 2.3 but for fields)	3
\mathbf{F}	Free propagator from $Z[J]$ (script section 3.1)	3
\mathbf{G}	Euclidean formulation and statistical mechanics	4
Sci	int section numbers refer to lecture notes of Prof. Babis Anastasiou	

A Motivation

Advantages of the path integral formalism wrt. "canonical quantization":

- compact notation
- covers non-perturbative features
- natural interface to lattice gauge theory
- \bullet encodes *n*-point functions for all *n* (effect. potential)
- explicite conservation symmetries (incl. Lorentz symmetry)
- easy derivation of Feynman rules
- easy quantization of non-abelian QFT (Fadeev-Popov method)

Literature (formal level): any modern QFT text book, e.g.:

- Peskin, Schroeder: An introduction to quantum field theory
- Weinberg: Quantum theory of fields I
- Ryder: Quantum field theory

Literature (in-depth, related fields):

- Roepstorff: Pfadintegrale in der Quantenphysik
- Zinn-Justin: Quantum field theory and critical phenomena

B Path integral in QM

(script section 2.1)

Assume

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}). \tag{1}$$

Show:

$$\left\langle x_f | e^{-i\hat{H}(t_f - t_i)} | x_i \right\rangle = \frac{1}{\mathcal{N}} \int \mathcal{D}x \, \exp\left(\frac{i}{\hbar} \int_{t_i}^{t_f} \mathrm{d}t \, L(x(t))\right)$$
 (2)

R.h.s. is the Feynman path integral of quantum mechanics. "Integration over all paths". Key points:

- transition from operators to functions (distrib.)
- limit $\delta t \to 0$ gives linearization in δt

Figure 1: Supporting points for some path with $x(t_i) = x_i$ and $x(t_f) = x_f$.

Note: it is straight-forward to generalize this to N dimensions:

$$\left\langle \vec{x}_f | e^{-i\hat{H}(t_f - t_i)} | \vec{x}_i \right\rangle = \frac{1}{\mathcal{N}} \int \mathcal{D}\vec{x} \exp\left(\frac{i}{\hbar} \int_{t_i}^{t_f} dt L(\vec{x}(t))\right)$$
 (3)

where

$$\vec{x} \equiv (x_1, \dots, x_N), \qquad \mathcal{D}\vec{x} \equiv \prod_{j=1}^N \mathcal{D}x_j.$$
 (4)

Note: generalization to Hamiltonians with more complicated \hat{p}_j dependence

$$\left\langle \vec{q}_f | e^{-i\hat{H}(t_f - t_i)} | \vec{q}_i \right\rangle = \int \prod_{i=1}^N \mathcal{D}q_i \prod_{j=1}^N \mathcal{D}p_j \exp\left(\frac{i}{\hbar} \int_{t_1}^{t_2} dt \left(\sum_{k=1}^N p_k \dot{q}_k - H(p, q)\right)\right)$$
(5)

with integration over all paths $\vec{p}(t)$ and all paths $\vec{q}(t)$ which match boundary conditions $\vec{q}(t_i) = \vec{q}_i$ and $\vec{q}(t_f) = \vec{q}_f$ at the endpoints. Must take care of \hat{p}_j and \hat{q}_j ordering.

C Path integral for scalar QFT

(script section 3)

Consider scalar QFT as quantum mechanical system with "infinitely many oscillators" (and use high energy units with $\hbar = 1$):

$$[\hat{x}_i, \hat{p}_i] = i\delta_{ij} \tag{6}$$

$$\rightarrow [\hat{\phi}(\vec{x}), \hat{\pi}(\vec{y})] = i\delta^{(3)}(\vec{x} - \vec{y}) \tag{7}$$

Postulate: in analogy to the QM case assume that in QFT holds

$$\left\langle \phi | e^{-i\hat{H}(t_f - t_i)} | \phi' \right\rangle = \mathcal{N} \int \mathcal{D}\phi \, \exp\left(i \int_{t_i}^{t_f} \mathrm{d}t \, L\right)$$
 (8)

where the r.h.s. is the QFT path integral, $L = \int d^3 \vec{x} \mathcal{L}$ and integration is over all field configurations with $\phi(\vec{x}, t_i) = \phi_i(\vec{x})$ and $\phi(\vec{x}, t_f) = \phi_f(\vec{x})$. Show in the following this makes sense.

D Greens functions

(script section 2.2 and 2.4 but for fields)

Show:

$$\left\langle \phi | e^{-i\hat{H}t_f} T(\hat{\phi}_H(x_1) \cdots \hat{\phi}_H(x_n)) e^{i\hat{H}t_i} | \phi' \right\rangle = \int \mathcal{D}\phi \, \phi(x_1) \cdots \phi(x_n) \exp\left(i \int_{t_i}^{t_f} dt \, L\right) \tag{9}$$

Show:

$$\left\langle 0|T(\hat{\phi}_H(x_1)\cdots\hat{\phi}_H(x_n))|0\right\rangle = \frac{\int \mathcal{D}\phi\,\phi(x_1)\cdots\phi(x_n)\exp\left(i\int d^4\vec{x}\mathcal{L}\right)}{\int \mathcal{D}\phi\,\exp\left(i\int d^4\vec{x}\mathcal{L}\right)}$$
(10)

using a "damping term" $(1/2)i\epsilon\phi^2$ in \mathcal{L} .

E Generating functional Z[J]

(script sections 2.2 and 2.3 but for fields)

Show:

$$\left\langle 0|T(\hat{\phi}_H(x_1)\cdots\hat{\phi}_H(x_n))|0\right\rangle = \frac{1}{i^n Z[0]} \frac{\delta^{(n)}}{\delta J(x_1)\cdots\delta J(x_n)} Z[J] \bigg|_{J=0}$$
(11)

F Free propagator from Z[J]

(script section 3.1)

Assume: free massive scalar theory

Show:

$$Z[J] = Z[0] \exp\left(-\frac{1}{2} \int d^4x d^4y J(x) D_F(x-y) J(y)\right)$$
(12)

Then we get immediately:

$$\left\langle 0|T(\hat{\phi}_H(x_1)\hat{\phi}_H(x_n))|0\right\rangle = D_F(x_1 - x_2) \tag{13}$$

$$= \int \frac{\mathrm{d}^4 x}{(2\pi)^4} e^{-ik \cdot (x_1 - x_2)} \frac{i}{k^2 - m^2 + i\epsilon}$$
 (14)

G Euclidean formulation and statistical mechanics

Perform Wick rotation clockwise in complex t-plane, with

$$t \equiv -ix_4, \qquad x_E = (x_1, x_2, x_3, x_4), \qquad x^2 = -x_E^2,$$
 (15)

With

$$\mathcal{L}_E = \frac{1}{2} \partial_\mu^E \phi \partial_\mu^E \phi + \frac{1}{2} m^2 \phi^2 \tag{16}$$

the path integral is:

$$Z[J] = \int \mathcal{D}\phi \, \exp\left(-\frac{1}{\hbar} \int d^4x_E (\mathcal{L}_E - J\phi)\right)$$
 (17)

Similar to partition function in statistical mechanics:

$$Z = \sum_{n} \exp\left(-\frac{1}{kT}E_n\right). \tag{18}$$