Chapter 5

Quantum Monte Carlo

This chapter is devoted to the study of quatum many body systems using Monte Carlo
techniques. We analyze two of the methods that belong to the large family of the
quantum Monte Carlo techniques, namely the Path-Integral Monte Carlo (PIMC) and
the Diffusion Monte Carlo (DMC, also named Green’s function Monte Carlo). In the
first section we start by introducing PIMC.

5.1 Path Integrals in Quantum Statistical Mechan-
ics

In this section we introduce the path-integral description of the properties of quantum
many-body systems. We show that path integrals permit to calculate the static prop-
erties of systems of Bosons at thermal equilibrium by means of Monte Carlo methods.

We consider a many-particle system described by the non-relativistic Hamiltonian
H=T+V; (5.1)

in coordinate representation the kinetic operator T and the potential operator V are
defined as:

T = ——ZAi, and (5.2)

~

V = V(R). (5.3)

In these equations A is the Plank’s constant divided by 27, m the particles mass, N
the number of particles and the vector R = (71, ...,7y) describes their positions. We
consider here systems in d dimensions, with fixed number of particles, temperature T,
contained in a volume V.

In most case, the potential V (R) is determined by inter-particle interactions, in which
case it can be written as the sum of pair contributions V (R) =, ;v (r; — r;), where
v(r) is the inter-particle potential; it can also be due to an external field, call it vey(7),
in which case it is just the sum of single particle contributions V (R) = >, Vex (7).



We first assume that particles, although being identical, are distinguishable. Therefore,
they obey Boltzmann statistics. In section 5.1.3 we will describe the treatment of iden-
tical particles obeying Bose statistics.

All the static properties of a quantum many-body system in thermal equilibrium

are obtainable from the thermal density matrix exp (—ﬁﬁ ), where § = 1/kgT, with

kp the Boltzmann’s constant. The expectation value of an observable operator O is:

~

(O) = Tr (O exp (-g[—})) /2, (5.4)

where the partition function Z is the trace of the density matrix:

Z ="Tr (exp <—ﬁ1{1>) : (5.5)

In the following we will find convenient to use the density matrix in coordinate repre-
sentation. We denote its matrix elements as:

p(R,R.p) = <R ‘exp (—ﬁH) ‘ R’>. (5.6)

The partition function is the integral of the diagonal matrix elements over all possible
configurations:

Z(N,T,V) = /p (R,R,3)dR. (5.7)
The product of two density matrices is again a density matrix:
exp (‘ (B1+ Ba) lﬁf) = exp (—ﬁlf]> exp (—@f]) . (5.8)

This property, often referred to as ‘product property’, written in coordinate represen-
tation gives a convolution integral:

p(Ry, R3, By + 2) = /p(R1,R2,51)P(R27R3752)dR2- (5.9)

If we apply the product property M times we obtain the density matrix at the inverse
temperature § as the product of M density matrices at the inverse temperature 7 =
B/M. In operator form:

exp (—ﬁf[) = <eXp (—TFI))M. (5.10)

We call time step the quantity 7. Eq. (5.10) written in coordinate representation be-
comes:

/)(R17RM+175):/~-~/dR2dR3...dRM
p(RlaRZ,T)p(RQ,Rg,T)-..p(RM,RM_H,T), (5'11)



Eq. (5.11) is not useful as it is since the density matrices p (R;, Rj11,T) are, in general,
unknown quantities. We note, however, that if M is a large number, then the time-step
7, which corresponds to the high temperature MT, is small. If in eq. (5.11) we replace
the exact density matrix p (R;, R;+1,7) with a ‘short time’ or ‘high temperature’ ap-
proximation we obtain a multidimensional integral of known functions. Furthermore,
in coordinate representation the density matrix is positive definite. It is known that
many-variable integrals of positive functions can be calculated efficiently by means of
Monte Carlo methods.

The simplest expression for the ‘high temperature’ density matrix is the so called prim-
itiwe approximation. It consists in neglecting all terms beyond the one which is linear
in 7 in the left-hand side exponent of the following operator identity (Baker-Campbell-
Hausdorff relation):

2

exp <—T (T + V) + % [T, V} + - ) = exp (—TT) exp (—TV) . (5.12)

(In this equation dots indicate terms which contain powers of 7 higher than the second.)
One obtains the following approximate expression for the density matrix operator:

exp (—Tﬂ) = exp (—TT) exp (—TV) : (5.13)

It is easy to write the matrix elements of the kinetic density matrix exp (—TT ) and

the potential density matrix exp (—TV) in coordinate representation. The latter is

(n

given that we consider potentials that are diagonal in coordinate space. The former, in
free space, is a gaussian propagator (see section 5.1.2):

diagonal:

exp (—TV) ’ Ri+1> =exp (—7V (Ry))d (Ry, Ry), (5.14)

; - R, — R;.)’
<R@ exp <_7'T> ‘ Ri+1> = (271'%27/771) aNy/2 exXp [—ﬁ] . (515)
For later convenience we introduce the following definition:
— "2
p" (R, R, 7) = (2nh*/m) AN/ exp [—%] (5.16)

In the limit of large Trotter number M equation (5.10) remains exact if we use the
primitive approximation eq. (5.12) in its right hand side. This is guaranteed by the
Trotter formula:

. . N1M
exp (—ﬁ (T + V)) = Mlilﬂoo [exp (—TT) exp (—TV)} , (5.17)
which holds for any pairs of operators bounded from below. The kinetic operator T and

the potential operators V' of interest to us satisfy this requirement. To make the con-
sequence of the Trotter formula explicit in coordinate representation we substitute the



matrix elements of the kinetic and the potential density matrices eqgs. (5.15) and (5.14)
in the path-integral formula (5.11). We arrive at the following dN (M — 1)-dimensional
integral:

p(Ry, Ryy1, 3) = /.../HdeH{pfree (Rj,Rj+1,T)exp [—TV(Rj)]}. (5.18)

The Trotter formula guarantees that in the limit M — oo this is an exact equation. If
M is a large, but finite, number the integral (5.18) can be computed using the Monte
Carlo procedure. One big issue is the determination of the lowest value of M for which
the systematic error due to M being finite is smaller than the unavoidable statistical
error associated to the Monte Carlo evaluation.

At this point it is useful to introduce some definitions we will employ extensively in
the next lectures.

Many-particle path: also called ‘system configuration’, it is the set of the dNM co-
ordinates Ry, Ry, ..., Ry),.

Time-slice: the j—th term of a system configuration, indicated with R;, contains the
dN coordinates of the N particles at imaginary time (j — 1)7 and will be called
‘time-slice’.

World line: the ‘world line’ i is the set of coordinates describing the path of the

particle ¢ in imaginary time: {rﬁ, oo ., r?, cy rﬁ\/[}

Bead: we call ‘beads’ the M components of a world line.

The trace of the density matrix (5.18) gives the partition function:

Z(N,V,T):/p(Rl,Rl,ﬁ)de:/u-/ﬁde

H {p™(Rj, Rj11,7)exp [TV (R;)]}. (5.19)

j=1

For distinguishable particles Ry;1 = R;. Note that eq. (5.19) represents the partition
function of a classical system of polymers. Every polymer is a necklake of beads inter-
acting as if they were connected by ideal springs. This harmonic interaction is due to
the kinetic density matrix. In the primitive approximation beads with the same imagi-
nary time index j, i.e., belonging to the same time-slice, interact with the inter-particle
potential v(r). With higher order approximations one generally introduces effective in-
terparticle interactions. This is the famous mapping of quantum to classical systems
introduced by Feynman to describe the properties of superfluid helium. Each quantum
particle has been substituted by a classical polymer. The size of polymers is of order
A = +/2mwh?(3/m, the de Broglie thermal wave-length, and represents the indetermina-
tion on the position of the corresponding quantum particle. In the section 5.1.3 we will
see how the indistinguishability of identical particles modifies the ‘polymer’ description
of the quantum many body system.



5.1.1 Analogy inverse temperature — imaginary time

In the previous sections we have shown that the partition function of a quantum system
can be decomposed using path-integrals. It is interesting to notice that a path-integral
can be regarded as a time-evolution in imaginary time. To understand this, let us
consider the time-dependent Schrédinger equation:

ih%qﬁ(R, 7) = H)(R, 7). (5.20)
The Green’s function of eq. (5.20) is:
G(R, R 1) = <R ‘eXp (—it/hﬁ) ‘ R’> . (5.21)

It is the solution of the Schrodinger equation with the initial condition ¢ (R,0) =
d (R — R/). It governs the time-evolution of the wave function. In fact, using the Green’s
function one can write the differential equation (5.20) in the integral form:

S(R, 1) = / G(R,R,t)¢(R,0)dR. (5.22)

Now, we can notice that eq. (5.21) is analogous to the thermal density matrix (5.6)
once one substitutes § — it/h in eq. (5.6).

5.1.2 Free-particle density matrix

Let us consider a free particle in 1D. The Hamiltonian describing this system is:

- h? d2

It is easy to determine the thermal density matrix corresponding to this Hamiltonian.
We start from the definition:

p(x,2',B) = <:c ’exp (—ﬁﬁ) ’ SL’I> : (5.24)

We introduce twice the completeness relation [ |p) (p|dp = I, where |p) are the eigen-
states of the momentum operator:

p(z, @, 3) = /dp/dp’ (z|p) <p‘eXp (—BFI> p’> (pl') =
% /dp/hexp (i (x — ") p/h) exp (—%ﬁ) :
(5.25)

Here we have used the expression of the momentum eigenstates is coordinate space
(x|p) = ﬁ exp (izp/h), and their orthogonality (p|p’) = d (p — p'). In the last integral
in eq. (5.25) we recognize the inverse-Fourier transform of a Gaussian function. The



Fourier transform F(k) of the function f(z) = exp(—z?/(4a?)) is again a Gaussian
function:

F(k) = V2aexp (ak?). (5.26)
Using this result in eq. (5.25) we obtain that the free-particle density matrix is a Gaus-

sian propagator:
/ [ m m n2

5.1.3 Bose symmetry

The expression (5.19) for the partition function is not symmetrical under particle ex-
change, so it holds for distinguishable particles only. The correct expression for identical
particles obeying Bose (Fermi) statistics should be symmetrical (anti-symmetrical) un-
der particle exchange. A convenient way to symmetrize the density matrix (5.18) is to
sum over all possible permutations of the particle labels in one of the two arguments:

1
PBose (Rh R,, 5) = ﬁ ZP (Rh PR275) ) (5-28)
P

where P is one of the N! permutations of the particle labels; this means that PR =
(rP® pp@ L pPN)) where p(i), with ¢ = 1,2,...,N, is the particle label in permu-
tation with the i-th particle. If we trace the symmetrized density matrix eq. (5.28) we
obtain the partition function for identical Bose particles:

M
1
Znow VD) = 153 [ [T] 4R,
B j=1
M

[T{p™ (R, Rjsr, 7) exp -7V (R))]}, (5.29)

J=1

with the new boundary condition Ry;,; = PR;. As a consequence of symmetrization
the necklaces constituting the polymers are not closed on themselves. The last bead of
the 4-th world line, 7, is connected to the first bead of the p(i)-th world-line, 7",
At low temperatures, where the thermal wave-length Ay is comparable to the average
inter-particle distance, large permutations cycles form. These are responsible for macro-
scopic quantum phenomena such as superfluidity and Bose-Einstein condensation.

An exact evaluation of the N! addends summed in eq.(5.29) becomes soon unfeasible
by increasing N. Fortunately, all terms are positive definite, then we can still arrange a
Monte Carlo procedure for the evaluation of eq. (5.29). If we considered Fermi particles,
an additional ‘4’ or ‘=’ sign would appear in front of each term, the former for even
permutations, the latter for odd permutations. A Monte Carlo evaluation of the Fermi
partition function would lead to an exponentially small signal to noise ratio going to
small T" and large N. As a consequence of this sign problem the path-integral calculation
becomes unfeasible unless one introduces some systematic approximations.



5.1.4 Path sampling methods

In this section we describe the Monte Carlo procedure to sample path-integrals.

One has to set a random walk through configuration space. Let P (X, X’) be the prob-
ability to jump from configuration X to X’. One can prove that if the transition matrix
P (X, X') satisfies the detailed balance condition:

T(X)P(X,X")=7m(X)P (X, X), (5.30)

then the random walk samples points with probability 7(X).

One very flexible algorithm that satisfies eq. (5.30) is the famous Metropolis algorithm.
This algorithm is divided in two steps. The first is the proposal of a transition from
point X to X’ with an arbitrary probability 7" (X, X’). The second consists in an ac-
ceptance/rejection stage. The proposal is accepted with the probability defined by:

A(X,X') =min (1, x (X, X)), (5.31)
where
m(X"T (X', X)
m(X)T (X, X")
If, for example, we choose to displace one bead, say 'ré, to another point, call it ré’ ,
that we sample uniformly from a sphere with center in the old position, then one has

that T (X', X) = T (X, X’) by symmetry and that the probability to accept the move
is determined by

X (X, X') = (5.32)

€xXp |:_ <T;71_T;/2>h2t/(:3/_r;+1)
Y(X, X)) = R —— exp [-7 (V (R)) =V (Ry))]. (5.33)
exXp [_ = j%zT/mj L }

This type of ‘single bead” move becomes extremely inefficient when the number of
time-slices M increases (critical slowing down), so one faces ergodicity problems. To
increase efficiency one can implement a direct sampling of the kinetic-energy part of
the probability distribution for one bead or for a larger piece of a word-line. There
are several algorithms that permit drawing a free-particle path (see references). With
this type of move rejections are only determined by inter-particle interactions and/or
external potentials.

5.1.5 Calculating properties

The expectation value of any operator O associated to a physical observable can be
written as a path integral in the following form:

0=(0(X) = > / O (X) 7 (X, P)dX. (5.34)

The energy per particle E/N of a quantum many body system is the expectation value
of the Hamiltonian operator H divided by the number of particles N. According to
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its thermodynamic definition we can also obtain E/N through a (-derivative of the
partition function Z:
E(N,V,5) 1 9Z(N.V.)
N - NZ o3
If we apply this derivative to the symmetrized partition function defined in eq. (5.29)
we obtain the following estimator for the energy per particle (called thermodynamic
estimator):

Eu, d m M -
W:<§‘W> 2 (R = Ry) M—g > (5.35)

5.1.6 Useful references

o A statistical approach to Quantum Mechanics, by M. Creutz and B. Freedman,
Annals of Physics 132 (1981) 427.

e A Java demonstration of Path integral Monte Carlo by A. Santamaria can be
found at http://fisteo12.ific.uv.es/~santamar/qapplet/metro.html. Note that the
parameters of the quartic potential can be adjusted interactively.

e D. M. Ceperley, Review of Modern Physics 67, 279 (1995).



