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Chapter 1

Introduction

1.1 General

For physics students the computational quantum physics courses is a recommended
prerequisite for any computationally oriented semester thesis, proseminar, master thesis
or doctoral thesis.

For computational science and engineering (RW) students the computa-
tional quantum physics courses is part of the “Vertiefung” in theoretical physics.

1.1.1 Exercises

Programming Languages

Except when a specific programming language or tool is explicitly requested you are
free to choose any programming language you like. Solutions will often be given either
as C++ programs or Mathematica Notebooks.

Computer Access

The lecture rooms offer both Linux workstations, for which accounts can be requested
with the computer support group of the physics department in the HPR building, as
well as connections for your notebook computers.
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1.1.2 Prerequisites

As a prerequisite for this course we expect knowledge of the following topics. Please
contact us if you have any doubts or questions.

Computing

• Basic knowledge of UNIX

• At least one procedural programming language such as C, C++, Pascal, Java or
FORTRAN. C++ knowledge is preferred.

• Knowledge of a symbolic mathematics program such as Mathematica or Maple.

• Ability to produce graphical plots.

Numerical Analysis

• Numerical integration and differentiation

• Linear solvers and eigensolvers

• Root solvers and optimization

• Statistical analysis

Quantum Mechanics

Basic knowledge of quantum mechanics, at the level of the quantum mechanics taught
to computational scientists, should be sufficient to follow the course. If you feel lost at
any point, please ask the lecturer to explain whatever you do not understand. We want
you to be able to follow this course without taking an advanced quantum mechanics
class.

1.1.3 References

1. J.M. Thijssen, Computational Physics, Cambridge University Press (1999) ISBN
0521575885

2. Nicholas J. Giordano, Computational Physics, Pearson Education (1996) ISBN
0133677230.

3. Harvey Gould and Jan Tobochnik, An Introduction to Computer Simulation Meth-
ods, 2nd edition, Addison Wesley (1996), ISBN 00201506041

4. Tao Pang, An Introduction to Computational Physics, Cambridge University Press
(1997) ISBN 0521485924
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1.2 Overview

In this class we will learn how to simulate quantum systems, starting from the simple
one-dimensional Schrödinger equation to simulations of interacting quantum many body
problems in condensed matter physics and in quantum field theories. In particular we
will study

• The one-body Schrödinger equation and its numerical solution

• The many-body Schrödinger equation and second quantization

• Approximate solutions to the many body Schrödinger equation

• Path integrals and quantum Monte Carlo simulations

• Numerically exact solutions to (some) many body quantum problems

• Some simple quantum field theories
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Chapter 2

Quantum mechanics in one hour

2.1 Introduction

The purpose of this chapter is to refresh your knowledge of quantum mechanics and
to establish notation. Depending on your background you might not be familiar with
all the material presented here. If that is the case, please ask the lecturers and we
will expand the introduction. Those students who are familiar with advanced quantum
mechanics are asked to glance over some omissions.

2.2 Basis of quantum mechanics

2.2.1 Wave functions and Hilbert spaces

Quantum mechanics is nothing but simple linear algebra, albeit in huge Hilbert spaces,
which makes the problem hard. The foundations are pretty simple though.

A pure state of a quantum system is described by a “wave function” |Ψ〉, which is
an element of a Hilbert space H:

|Ψ〉 ∈ H (2.1)

Usually the wave functions are normalized:

|| |Ψ〉 || =
√
〈Ψ|Ψ〉 = 1. (2.2)

Here the “bra-ket” notation
〈Φ|Ψ〉 (2.3)

denotes the scalar product of the two wave functions |Φ〉 and |Ψ〉.
The simplest example is the spin-1/2 system, describing e.g. the two spin states

of an electron. Classically the spin ~S of the electron (which can be visualized as an
internal angular momentum), can point in any direction. In quantum mechanics it is
described by a two-dimensional complex Hilbert space H = C2. A common choice of
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basis vectors are the “up” and “down” spin states

| ↑〉 =

(
1
0

)
(2.4)

| ↓〉 =

(
0
1

)
(2.5)

This is similar to the classical Ising model, but in contrast to a classical Ising spin
that can point only either up or down, the quantum spin can exist in any complex
superposition

|Ψ〉 = α| ↑〉+ β| ↓〉 (2.6)

of the basis states, where the normalization condition (2.2) requires that |α|2 + |β|2 = 1.
For example, as we will see below the state

| →〉 =
1√
2

(| ↑〉+ | ↓〉) (2.7)

is a superposition that describes the spin pointing in the positive x-direction.

2.2.2 Mixed states and density matrices

Unless specifically prepared in a pure state in an experiment, quantum systems in
Nature rarely exist as pure states but instead as probabilistic superpositions. The most
general state of a quantum system is then described as a density matrix ρ, with unit
trace

Trρ = 1. (2.8)

The density matrix of a pure state is just the projector onto that state

ρpure = |Ψ〉〈Ψ|. (2.9)

For example, the density matrix of a spin pointing in the positive x-direction is

ρ→ = | →〉〈→ | =
(

1/2 1/2
1/2 1/2

)
. (2.10)

Instead of being in a coherent superposition of up and down, the system could also
be in a probabilistic mixed state, with a 50% probability of pointing up and a 50%
probability of pointing down, which would be described by the density matrix

ρmixed =

(
1/2 0
0 1/2

)
. (2.11)

2.2.3 Observables

Any physical observable is represented by a self-adjoint linear operator acting on the
Hilbert space, which in a final dimensional Hilbert space can be represented by a Hermi-
tian matrix. For our spin-1/2 system, using the basis introduced above, the components
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Sx, Sy and Sz of the spin in the x-, y-, and z-directions are represented by the Pauli
matrices

Sx =
~
2
σx =

~
2

(
0 1
1 0

)
(2.12)

Sy =
~
2
σy =

~
2

(
0 −i
i 0

)
(2.13)

Sz =
~
2
σz =

~
2

(
1 0
0 −1

)
(2.14)

The spin component along an arbitrary unit vector ê is the linear superposition of
the components, i.e.

ê · ~S = exSx + eySy + ezSz =
~
2

(
ez ex − iey

ex + iey −ez
)

(2.15)

The fact that these observables do not commute but instead satisfy the non-trivial
commutation relations

[Sx, Sy] = SxSy − SySx = i~Sz, (2.16)

[Sy, Sz] = i~Sx, (2.17)

[Sz, Sx] = i~Sy, (2.18)

is the root of the differences between classical and quantum mechanics .

2.2.4 The measurement process

The outcome of a measurement in a quantum system is usually intrusive and not deter-
ministic. After measuring an observable A, the new wave function of the system will be
an eigenvector of A and the outcome of the measurement the corresponding eigenvalue.
The state of the system is thus changed by the measurement process!

For example, if we start with a spin pointing up with wave function

|Ψ〉 = | ↑〉 =

(
1
0

)
(2.19)

or alternatively density matrix

ρ↑ =

(
1 0
0 0

)
(2.20)

and we measure the x-component of the spin Sx, the resulting measurement will be
either +~/2 or −~/2, depending on whether the spin after the measurement points in
the + or − x-direction, and the wave function after the measurement will be either of

| →〉 =
1√
2

(| ↑〉+ | ↓〉) =

(
1/
√

2

1/
√

2

)
(2.21)

| ←〉 =
1√
2

(| ↑〉 − | ↓〉) =

(
1/
√

2

−1/
√

2

)
(2.22)
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Either of these states will be picked with a probability given by the overlap of the initial
wave function by the individual eigenstates:

p→ = ||〈→ |Ψ〉||2 = 1/2 (2.23)

p← = ||〈← |Ψ〉||2 = 1/2 (2.24)

The final state is a probabilistic superposition of these two outcomes, described by the
density matrix

ρ = p→| →〉〈→ |+ p←| ←〉〈← | =
(

1/2 0
0 1/2

)
. (2.25)

which differs from the initial density matrix ρ↑.
If we are not interested in the result of a particular outcome, but just in the average,

the expectation value of the measurement can easily be calculated from a wave function
|Ψ〉 as

〈A〉 = 〈Ψ|A|Ψ〉 (2.26)

or from a density matrix ρ as
〈A〉 = Tr(ρA). (2.27)

For pure states with density matrix ρΨ = |Ψ〉〈Ψ| the two formulations are identical:

Tr(ρ0A) = Tr(|Ψ〉〈Ψ|A) = 〈Ψ|A|Ψ〉. (2.28)

2.2.5 The uncertainty relation

If two observables A and B do not commute [A,B] 6= 0, they cannot be measured
simultaneously. If A is measured first, the wave function is changed to an eigenstate of
A, which changes the result of a subsequent measurement of B. As a consequence the
values of A and B in a state Ψ cannot be simultaneously known, which is quantified by
the famous Heisenberg uncertainty relation which states that if two observables A and
B do not commute but satisfy

[A,B] = i~ (2.29)

then the product of the root-mean-square deviations ∆A and ∆B of simultaneous mea-
surements of A and B has to be larger than

∆A∆B ≥ ~/2 (2.30)

For more details about the uncertainty relation, the measurement process or the inter-
pretation of quantum mechanics we refer interested students to an advanced quantum
mechanics class or text book.

2.2.6 The Schrödinger equation

The time-dependent Schrödinger equation

After so much introduction the Schrödinger equation is very easy to present. The wave
function |Ψ〉 of a quantum system evolves according to

i~
∂

∂t
|Ψ(t)〉 = H|Ψ(t)〉, (2.31)

where H is the Hamilton operator. This is just a first order linear differential equation.
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The time-independent Schrödinger equation

For a stationary time-independent problem the Schrödinger equation can be simplified.
Using the ansatz

|Ψ(t)〉 = exp(−iEt/~)|Ψ〉, (2.32)

where E is the energy of the system, the Schrödinger equation simplifies to a linear
eigenvalue problem

H|Ψ〉 = E|Ψ〉. (2.33)

The rest of the semester will be spent solving just this simple eigenvalue problem!

The Schrödinger equation for the density matrix

The time evolution of a density matrix ρ(t) can be derived from the time evolution of
pure states, and can be written as

i~
∂

∂t
ρ(t) = [H, ρ(t)] (2.34)

The proof is left as a simple exercise.

2.2.7 The thermal density matrix

Finally we want to describe a physical system not in the ground state but in thermal
equilibrium at a given inverse temperature β = 1/kBT . In a classical system each mi-
crostate i of energy Ei is occupied with a probability given by the Boltzman distribution

pi =
1

Z
exp(−βEi), (2.35)

where the partition function

Z =
∑
i

exp(−βEi) (2.36)

normalizes the probabilities.
In a quantum system, if we use a basis of eigenstates |i〉 with energy Ei, the density

matrix can be written analogously as

ρβ =
1

Z

∑
i

exp(−βEi)|i〉〈i| (2.37)

For a general basis, which is not necessarily an eigenbasis of the Hamiltonian H, the
density matrix can be obtained by diagonalizing the Hamiltonian, using above equation,
and transforming back to the original basis. The resulting density matrix is

ρβ =
1

Z
exp(−βH) (2.38)

where the partition function now is

Z = Tr exp(−βH) (2.39)
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Calculating the thermal average of an observable A in a quantum system is hence
formally very easy:

〈A〉 = Tr(Aρβ) =
TrA exp(−βH)

Tr exp(−βH)
, (2.40)

but actually evaluating this expression is a hard problem.

2.3 The spin-S problem

Before discussing solutions of the Schrödinger equation we will review two very simple
systems: a localized particle with general spin S and a free quantum particle.

In section 2.2.1 we have already seen the Hilbert space and the spin operators for the
most common case of a spin-1/2 particle. The algebra of the spin operators given by the
commutation relations (2.12)-(2.12) allows not only the two-dimensional representation
shown there, but a series of 2S + 1-dimensional representations in the Hilbert space
C2S+1 for all integer and half-integer values S = 0, 1

2
, 1, 3

2
, 2, . . .. The basis states {|s〉}

are usually chosen as eigenstates of the Sz operator

Sz|s〉 = ~s|s〉, (2.41)

where s can take any value in the range −S,−S + 1,−S + 2, . . . , S − 1, S. In this basis
the Sz operator is diagonal, and the Sx and Sy operators can be constructed from the
“ladder operators”

S+|s〉 =
√
S(S + 1)− s(s+ 1)|s+ 1〉 (2.42)

S−|s〉 =
√
S(S + 1)− s(s− 1)|s− 1〉 (2.43)

which increment or decrement the Sz value by 1 through

Sx =
1

2

(
S+ + S−

)
(2.44)

Sy =
1

2i

(
S+ − S−

)
. (2.45)

The Hamiltonian of the spin coupled to a magnetic field ~h is

H = −gµB~h · ~S, (2.46)

which introduces nontrivial dynamics since the components of ~S do not commute. As
a consequence the spin precesses around the magnetic field direction.

Exercise: Derive the differential equation governing the rotation of a spin starting
along the +x-direction rotating under a field in the +z-direction

2.4 A quantum particle in free space

Our second example is a single quantum particle in an n-dimensional free space. Its
Hilbert space is given by all twice-continuously differentiable complex functions over
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the real space Rn. The wave functions |Ψ〉 are complex-valued functions Ψ(~x) in n-
dimensional space. In this representation the operator x̂, measuring the position of the
particle is simple and diagonal

x̂ = ~x, (2.47)

while the momentum operator p̂ becomes a differential operator

p̂ = −i~∇. (2.48)

These two operators do not commute but their commutator is

[x̂, p̂] = i~. (2.49)

The Schrödinger equation of a quantum particle in an external potential V (~x) can be
obtained from the classical Hamilton function by replacing the momentum and position
variables by the operators above. Instead of the classical Hamilton function

H(~x, ~p) =
~p2

2m
+ V (~x) (2.50)

we use the quantum mechanical Hamiltonian operator

H =
p̂2

2m
+ V (x̂) = − ~2

2m
∇2 + V (~x), (2.51)

which gives the famous form

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (~x)ψ (2.52)

of the one-body Schrödinger equation.

2.4.1 The harmonic oscillator

As a special exactly solvable case let us consider the one-dimensional quantum harmonic
oscillator with massm and potential K

2
x2. Defining momentum p̂ and position operators

q̂ in units where m = ~ = K = 1, the time-independent Schrödinger equation is given
by

H|n〉 =
1

2
(p̂2 + q̂2)|n〉 = En|n〉 (2.53)

Inserting the definition of p̂ we obtain an eigenvalue problem of an ordinary differential
equation

−1

2
φ′′n(q) +

1

2
q2φn(q) = Enφn(q) (2.54)

whose eigenvalues En = (n+ 1/2) and eigenfunctions

φn(q) =
1√

2nn!
√
π

exp

(
−1

2
q2

)
Hn(q), (2.55)

are known analytically. Here the Hn are the Hermite polynomials and n = 0, 1, . . ..
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Using these eigenstates as a basis sets we need to find the representation of q̂ and
p̂. Performing the integrals

〈m|q̂|n〉 and 〈m|p̂|n〉 (2.56)

it turns out that they are nonzero only for m = n± 1 and they can be written in terms
of “ladder operators” a and a†:

q̂ =
1√
2
(a† + a) (2.57)

p̂ =
1

i
√

2
(a† − a) (2.58)

(2.59)

where the raising and lowering operators a† and a only have the following nonzero
matrix elements:

〈n+ 1|a†|n〉 = 〈n|a|n+ 1〉 =
√
n+ 1. (2.60)

and commutation relations

[a, a] = [a†, a†] = 0 (2.61)

[a, a†] = 1. (2.62)

It will also be useful to introduce the number operator n̂ = a†a which is diagonal with
eigenvalue n: elements

n̂|n〉 = a†a|n〉 =
√
na†|n− 1〉 = n||n〉. (2.63)

To check this representation let us plug the definitions back into the Hamiltonian to
obtain

H =
1

2
(p̂2 + q̂2)

=
1

4

[
−(a† − a)2 + (a† + a)2

]
=

1

2
(a†a+ aa†)

=
1

2
(2a†a+ 1) = n̂+

1

2
, (2.64)

which has the correct spectrum. In deriving the last lines we have used the commutation
relation (2.62).
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Chapter 3

The quantum one-body problem

3.1 The time-independent 1D Schrödinger equation

We start the numerical solution of quantum problems with the time-indepent one-
dimensional Schrödinger equation for a particle with mass m in a Potential V (x). In
one dimension the Schrödinger equation is just an ordinary differential equation

− ~2

2m

∂2ψ

∂x2
+ V (x)ψ(x) = Eψ(x). (3.1)

We start with simple finite-difference schemes and discretize space into intervals of
length ∆x and denote the space points by

xn = n∆x (3.2)

and the wave function at these points by

ψn = ψ(xn). (3.3)

3.1.1 The Numerov algorithm

After rewriting the second order differential equation to a coupled system of two first
order differential equations, any ODE solver such as the Runge-Kutta method could be
applied, but there exist better methods. For the special form

ψ′′(x) + k(x)ψ(x) = 0, (3.4)

of the Schrödinger equation, with k(x) = 2m(E−V (x))/~2 we can derive the Numerov
algorithm by starting from the Taylor expansion of ψn:

ψn±1 = ψn ±∆xψ′n +
∆x2

2
ψ′′n ±

∆x3

6
ψ(3)
n +

∆x4

24
ψ(4)
n ±

∆x5

120
ψ(5)
n + O(∆x6) (3.5)

Adding ψn+1 and ψn−1 we obtain

ψn+1 + ψn−1 = 2ψn + (∆x)2ψ′′n +
(∆x)4

12
ψ(4)
n . (3.6)

12



Replacing the fourth derivatives by a finite difference second derivative of the second
derivatives

ψ(4)
n =

ψ′′n+1 + ψ′′n−1 − 2ψ′′n
∆x2

(3.7)

and substituting −k(x)ψ(x) for ψ′′(x) we obtain the Numerov algorithm(
1 +

(∆x)2

12
kn+1

)
ψn+1 = 2

(
1− 5(∆x)2

12
kn

)
ψn

−
(

1 +
(∆x)2

12
kn−1

)
ψn−1 + O(∆x6), (3.8)

which is locally of sixth order!

Initial values

To start the Numerov algorithm we need the wave function not just at one but at two
initial values and will now present several ways to obtain these.

For potentials V (x) with reflection symmetry V (x) = V (−x) the wave functions
need to be either even ψ(x) = ψ(−x) or odd ψ(x) = −ψ(−x) under reflection, which
can be used to find initial values:

• For the even solution we use a half-integer mesh with mesh points xn+1/2 =
(n+ 1/2)∆x and pick initial values ψ(x−1/2) = ψ(x1/2) = 1.

• For the odd solution we know that ψ(0) = −ψ(0) and hence ψ(0) = 0, specifying
the first starting value. Using an integer mesh with mesh points xn = n∆x we
pick ψ(x1) = 1 as the second starting value.

In general potentials we need to use other approaches. If the potentials vanishes for
large distances: V (x) = 0 for |x| ≥ a we can use the exact solution of the Schrödinger
equation at large distances to define starting points, e.g.

ψ(−a) = 1 (3.9)

ψ(−a−∆x) = exp(−∆x
√

2mE/~). (3.10)

Finally, if the potential never vanishes we need to begin with a single starting value
ψ(x0) and obtain the second starting value ψ(x1) by performing an integration over the
first time step ∆τ with an Euler or Runge-Kutta algorithm.

3.1.2 The one-dimensional scattering problem

The scattering problem is the numerically easiest quantum problem since solutions
exist for all energies E > 0, if the potential vanishes at large distances (V (x) → 0 for
|x| → ∞). The solution becomes particularly simple if the potential is nonzero only
on a finite interval [0, a]. For a particle approaching the potential barrier from the left
(x < 0) we can make the following ansatz for the free propagation when x < 0:

ψL(x) = A exp(−iqx) +B exp(iqx) (3.11)
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where A is the amplitude of the incoming wave and B the amplitude of the reflected
wave. On the right hand side, once the particle has left the region of finite potential
(x > a), we can again make a free propagation ansatz,

ψR(x) = C exp(−iqx) (3.12)

The coefficients A, B and C have to be determined self-consistently by matching to a
numerical solution of the Schrödinger equation in the interval [0, a]. This is best done
in the following way:

• Set C = 1 and use the two points a and a+ ∆x as starting points for a Numerov
integration.

• Integrate the Schrödinger equation numerically – backwards in space, from a to
0 – using the Numerov algorithm.

• Match the numerical solution of the Schrödinger equation for x < 0 to the free
propagation ansatz (3.11) to determine A and B.

Once A and B have been determined the reflection and transmission probabilities R
and T are given by

R = |B|2/|A|2 (3.13)

T = 1/|A|2 (3.14)

3.1.3 Bound states and solution of the eigenvalue problem

While there exist scattering states for all energies E > 0, bound states solutions of the
Schrödinger equation with E < 0 exist only for discrete energy eigenvalues. Integrating
the Schrödinger equation from −∞ to +∞ the solution will diverge to ±∞ as x→∞
for almost all values. These functions cannot be normalized and thus do not constitute
solutions to the Schrödinger equation. Only for some special eigenvalues E, will the
solution go to zero as x→∞.

A simple eigensolver can be implemented using the following shooting method, where
we again will assume that the potential is zero outside an interval [0, a]:

• Start with an initial guess E

• Integrate the Schrödinger equation for ψE(x) from x = 0 to xf � a and determine
the value ψE(xf )

• use a root solver, such as a bisection method (see appendix A.1), to look for an
energy E with ψE(xf ) ≈ 0

This algorithm is not ideal since the divergence of the wave function for x ± ∞ will
cause roundoff error to proliferate.

A better solution is to integrate the Schrödinger equation from both sides towards
the center:

• We search for a point b with V (b) = E
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• Starting from x = 0 we integrate the left hand side solution ψL(x) to a chosen point
b and obtain ψL(b) and a numerical estimate for ψ′L(b) = (ψL(b)−ψL(b−∆x))/∆x.

• Starting from x = a we integrate the right hand solution ψR(x) down to the same
point b and obtain ψR(b) and a numerical estimate for ψ′R(b) = (ψR(b + ∆x) −
ψR(b))/∆x.

• At the point b the wave functions and their first two derivatives have to match,
since solutions to the Schrödinger equation have to be twice continuously differen-
tiable. Keeping in mind that we can multiply the wave functions by an arbitrary
factor we obtain the conditions

ψL(b) = αψR(b) (3.15)

ψ′L(b) = αψ′R(b) (3.16)

ψ′′L(b) = αψ′′R(b) (3.17)

The last condition is automatically fulfilled since by the choice V (b) = E the
Schrödinger equation at b reduces to ψ′′(b) = 0. The first two conditions can be
combined to the condition that the logarithmic derivatives vanish:

d logψL
dx

|x=b =
ψ′L(b)

ψL(b)
=
ψ′R(b)

ψR(b)
=
d logψR
dx

|x=b (3.18)

• This last equation has to be solved for in a shooting method, e.g. using a bisection
algorithm

Finally, at the end of the calculation, normalize the wave function.

3.2 The time-independent Schrödinger equation in

higher dimensions

The time independent Schrödinger equation in more than one dimension is a partial
differential equation and cannot, in general, be solved by a simple ODE solver such as
the Numerov algorithm. Before employing a PDE solver we should thus always first try
to reduce the problem to a one-dimensional problem. This can be done if the problem
factorizes.

3.2.1 Factorization along coordinate axis

A first example is a three-dimensional Schrödinger equation in a cubic box with potential
V (~r) = V (x)V (y)V (z) with ~r = (x, y, z). Using the product ansatz

ψ(~r) = ψx(x)ψy(y)ψz(z) (3.19)

the PDE factorizes into three ODEs which can be solved as above.
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3.2.2 Potential with spherical symmetry

Another famous trick is possible for spherically symmetric potentials with V (~r) = V (|~r|)
where an ansatz using spherical harmonics

ψl,m(~r) = ψl,m(r, θ, φ) =
u(r)

r
Ylm(θ, φ) (3.20)

can be used to reduce the three-dimensional Schrödinger equation to a one-dimensional
one for the radial wave function u(r):[

− ~2

2m

d2

dr2
+

~2l(l + 1)

2mr2
+ V (r)

]
u(r) = Eu(r) (3.21)

in the interval [0,∞[. Given the singular character of the potential for r → 0, a
numerical integration should start at large distances r and integrate towards r = 0, so
that the largest errors are accumulated only at the last steps of the integration.

In the exercises we will solve a three-dimensional scattering problem and calculate
the scattering length for two atoms.

3.2.3 Finite difference methods

The simplest solvers for partial differential equations, the finite difference solvers can
also be used for the Schrödinger equation. Replacing differentials by differences we
convert the Schrödinger equation to a system of coupled inear equations. Starting from
the three-dimensional Schrödinger equation (we set ~ = 1 from now on)

∇2ψ(~x) + 2m(V − E(~x))ψ(~x) = 0, (3.22)

we discretize space and obtain the system of linear equations

1

∆x2
[ψ(xn+1, yn, zn) + ψ(xn−1, yn, zn)

+ψ(xn, yn+1, zn) + ψ(xn, yn−1, zn) (3.23)

+ψ(xn, yn, zn+1) + ψ(xn, yn, zn−1)]

+

[
2m(V (~x)− E)− 6

∆x2

]
ψ(xn, yn, zn) = 0.

For the scattering problem a linear equation solver can now be used to solve the
system of equations. For small linear problems Mathematica can be used, or the dsysv

function of the LAPACK library. For larger problems it is essential to realize that the
matrices produced by the discretization of the Schrödinger equation are usually very
sparse, meaning that only O(N) of the N2 matrix elements are nonzero. For these
sparse systems of equations, optimized iterative numerical algorithms exist1 and are
implemented in numerical libraries such as in the ITL library.2

1R. Barret, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C.
Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods (SIAM, 1993)

2J.G. Siek, A. Lumsdaine and Lie-Quan Lee, Generic Programming for High Performance Numerical
Linear Algebra in Proceedings of the SIAM Workshop on Object Oriented Methods for Inter-operable
Scientific and Engineering Computing (OO’98) (SIAM, 1998); the library is availavle on the web at:
http://www.osl.iu.edu/research/itl/
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To calculate bound states, an eigenvalue problem has to be solved. For small prob-
lems, where the full matrix can be stored in memory, Mathematica or the dsyev eigen-
solver in the LAPACK library can be used. For bigger systems, sparse solvers such as
the Lanczos algorithm (see appendix A.2) are best. Again there exist efficient imple-
mentations3 of iterative algorithms for sparse matrices.4

3.2.4 Variational solutions using a finite basis set

In the case of general potentials, or for more than two particles, it will not be possible to
reduce the Schrödinger equation to a one-dimensional problem and we need to employ
a PDE solver. One approach will again be to discretize the Schrödinger equation on a
discrete mesh using a finite difference approximation. A better solution is to expand
the wave functions in terms of a finite set of basis functions

|φ〉 =
N∑
i=1

ai|ui〉. (3.24)

To estimate the ground state energy we want to minimize the energy of the varia-
tional wave function

E∗ =
〈φ|H|φ〉
〈φ|φ〉

. (3.25)

Keep in mind that, since we only chose a finite basis set {|ui〉} the variational estimate
E∗ will always be larger than the true ground state energy E0, but will converge towards
E0 as the size of the basis set is increased, e.g. by reducing the mesh size in a finite
element basis.

To perform the minimization we denote by

Hij = 〈ui|H|uj〉 =

∫
d~rui(~r)

∗
(
− ~2

2m
∇2 + V

)
uj(~r) (3.26)

the matrix elements of the Hamilton operator H and by

Sij = 〈ui|uj〉 =

∫
d~rui(~r)

∗uj(~r) (3.27)

the overlap matrix. Note that for an orthogonal basis set, Sij is the identity matrix δij.
Minimizing equation (3.25) we obtain a generalized eigenvalue problem∑

j

Hijaj = E
∑
k

Sikak. (3.28)

or in a compact notation with ~a = (a1, . . . , aN)

H~a = ES~a. (3.29)

3http://www.comp-phys.org/software/ietl/
4Z. Bai, J. Demmel and J. Dongarra (Eds.), Templates for the Solution of Algebraic Eigenvalue

Problems: A Practical Guide (SIAM, 2000).

17



If the basis set is orthogonal this reduces to an ordinary eigenvalue problem and we can
use the Lanczos algorithm.

In the general case we have to find orthogonal matrices U such that UTSU is the
identity matrix. Introducing a new vector~b = U−1~a. we can then rearrange the problem
into

H~a = ES~a

HU~b = ESU~b

UTHU~b = EUTSU~b = E~b (3.30)

and we end up with a standard eigenvalue problem for UTHU . Mathematica and
LAPACK both contain eigensolvers for such generalized eigenvalue problems.

Example: the anharmonic oscillator

The final issue is the choice of basis functions. It is advantageous to make use of known
solutions to a similar problem as we will illustrate in the case of an anharmonic oscillator
with Hamilton operator

H = H0 + λq4

H0 =
1

2
(p2 + q2), (3.31)

where the harmonic oscillator H0 was already discussed in section 2.4.1. It makes sense
to use the N lowest harmonic oscillator eigenvectors |n〉 as basis states of a finite basis
and write the Hamiltonian as

H =
1

2
+ n̂+ λq̂4 =

1

2
+ n̂+

λ

4
(a† + a)4 (3.32)

Since the operators a and a† are nonzero only in the first sub or superdiagonal, the
resulting matrix is a banded matrix of bandwidth 9. A sparse eigensolver such as the
Lanczos algorithm can again be used to calculate the spectrum. Note that since we use
the orthonormal eigenstates of H0 as basis elements, the overlap matrix S here is the
identity matrix and we have to deal only with a standard eigenvalue problem.

The finite element method

In cases where we have irregular geometries or want higher precision than the lowest
order finite difference method, and do not know a suitable set of basis function, the
finite element method (FEM) should be chosen over the finite difference method. Since
explaining the FEM can take a full semester in itself, we refer interested students to
classes on solving partial differential equations.

3.3 The time-dependent Schrödinger equation

Finally we will reintroduce the time dependence to study dynamics in non-stationary
quantum systems.
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3.3.1 Spectral methods

By introducing a basis and solving for the complete spectrum of energy eigenstates we
can directly solve the time-dependent problem in the case of a stationary Hamiltonian.
This is a consequence of the linearity of the Schrödinger equation.

To calculate the time evolution of a state |ψ(t0)〉 from time t0 to t we first solve
the stationary eigenvalue problem H|φ〉 = E|φ〉 and calculate the eigenvectors |φn〉 and
eigenvalues εn. Next we represent the initial wave function |ψ〉 by a spectral decompo-
sition

|ψ(t0)〉 =
∑
n

cn|φn〉. (3.33)

Since each of the |φn〉 is an eigenvector of H, the time evolution e−i~H(t−t0) is trivial
and we obtain at time t:

|ψ(t)〉 =
∑
n

cne
−i~εn(t−t0)|φn〉. (3.34)

3.3.2 Direct numerical integration

If the number of basis states is too large to perform a complete diagonalization of
the Hamiltonian, or if the Hamiltonian changes over time we need to perform a direct
integration of the Schrödinger equation. Like other initial value problems of partial
differential equations the Schrödinger equation can be solved by the method of lines.
After choosing a set of basis functions or discretizing the spatial derivatives we obtain a
set of coupled ordinary differential equations which can be evolved for each point along
the time line (hence the name) by standard ODE solvers.

In the remainder of this chapter we use the symbol H to refer the representation of
the Hamiltonian in the chosen finite basis set. A forward Euler scheme

|ψ(tn+1)〉 = |ψ(tn)〉 − i~∆tH|ψ(tn)〉 (3.35)

is not only numerically unstable. It also violates the conservation of the norm of the
wave function 〈ψ|ψ〉 = 1. Since the exact quantum evolution

ψ(x, t+ ∆t) = e−i~H∆tψ(x, t). (3.36)

is unitary and thus conserves the norm, we want to look for a unitary approximant as
integrator. Instead of using the forward Euler method (3.35) which is just a first order
Taylor expansion of the exact time evolution

e−i~H∆t = 1− i~H∆t + O(∆2
t ), (3.37)

we reformulate the time evolution operator as

e−i~H∆t =
(
ei~H∆t/2

)−1
e−i~H∆t/2 =

(
1 + i~H

∆t

2

)−1(
1− i~H∆t

2

)
+ O(∆3

t ), (3.38)

which is unitary!
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This gives the simplest stable and unitary integrator algorithm

ψ(x, t+ ∆t) =

(
1 + i~H

∆t

2

)−1(
1− i~H∆t

2

)
ψ(x, t) (3.39)

or equivalently (
1 + i~H

∆t

2

)
ψ(x, t+ ∆t) =

(
1− i~H∆t

2

)
ψ(x, t). (3.40)

Unfortunately this is an implicit integrator. At each time step, after evaluating the
right hand side a linear system of equations needs to be solved. For one-dimensional
problems the matrix representation of H is often tridiagonal and a tridiagonal solver
can be used. In higher dimensions the matrix H will no longer be simply tridiagonal
but still very sparse and we can use iterative algorithms, similar to the Lanczos algo-
rithm for the eigenvalue problem. For details about these algorithms we refer to the
nice summary at http://mathworld.wolfram.com/topics/Templates.html and es-
pecially the biconjugate gradient (BiCG) algorithm. Implementations of this algorithm
are available, e.g. in the Iterative Template Library (ITL).

3.3.3 The split operator method

A simpler and explicit method is possible for a quantum particle in the real space picture
with the “standard” Schrödinger equation (2.52). Writing the Hamilton operator as

H = T̂ + V̂ (3.41)

with

T̂ =
1

2m
p̂2 (3.42)

V̂ = V (~x) (3.43)

it is easy to see that V̂ is diagonal in position space while T̂ is diagonal in momentum
space. If we split the time evolution as

e−i~∆tH = e−i~∆tV̂ /2e−i~∆tT̂ e−i~∆tV̂ /2 + O(∆3
t ) (3.44)

we can perform the individual time evolutions e−i~∆tV̂ /2 and e−i~∆tT̂ exactly:[
e−i~∆tV̂ /2|ψ〉

]
(~x) = e−i~∆tV (~x)/2ψ(~x) (3.45)[

e−i~∆tT̂ /2|ψ〉
]
(~k) = e−i~∆t||~k||2/2mψ(~k) (3.46)

in real space for the first term and momentum space for the second term. This requires
a basis change from real to momentum space, which is efficiently performed using a Fast
Fourier Transform (FFT) algorithm. Propagating for a time t = N∆t, two consecutive
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applications of e−i~∆tV̂ /2 can easily be combined into a propagation by a full time step
e−i~∆tV̂ , resulting in the propagation:

e−i~∆tH =
(
e−i~∆tV̂ /2e−i~∆tT̂ e−i~∆tV̂ /2

)N
+ O(∆2

t )

= e−i~∆tV̂ /2
[
e−i~∆tT̂ e−i~∆tV̂

]N−1

e−i~∆tT̂ e−i~∆tV̂ /2 (3.47)

and the discretized algorithm starts as

ψ1(~x) = e−i~∆tV (~x)/2ψ0(~x) (3.48)

ψ1(~k) = Fψ1(~x) (3.49)

where F denotes the Fourier transform and F−1 will denote the inverse Fourier trans-
form. Next we propagate in time using full time steps:

ψ2n(~k) = e−i~∆t||~k||2/2mψ2n−1(~k) (3.50)

ψ2n(~x) = F−1ψ2n(~k) (3.51)

ψ2n+1(~x) = e−i~∆tV (~x)ψ2n(~x) (3.52)

ψ2n+1(~k) = Fψ2n+1(~x) (3.53)

except that in the last step we finish with another half time step in real space:

ψ2N+1(~x) = e−i~∆tV (~x)/2ψ2N(~x) (3.54)

This is a fast and unitary integrator for the Schrödinger equation in real space. It could
be improved by replacing the locally third order splitting (3.44) by a fifth-order version
involving five instead of three terms.
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Chapter 4

Introduction to many-body
quantum mechanics

4.1 The complexity of the quantum many-body prob-

lem

After learning how to solve the 1-body Schrödinger equation, let us next generalize to
more particles. If a single body quantum problem is described by a Hilbert space H
of dimension dimH = d then N distinguishable quantum particles are described by the
tensor product of N Hilbert spaces

H(N) ≡ H⊗N ≡
N⊗
i=1

H (4.1)

with dimension dN .
As a first example, a single spin-1/2 has a Hilbert space H = C2 of dimension 2,

but N spin-1/2 have a Hilbert space H(N) = C2N
of dimension 2N . Similarly, a single

particle in three dimensional space is described by a complex-valued wave function ψ(~x)
of the position ~x of the particle, while N distinguishable particles are described by a
complex-valued wave function ψ(~x1, . . . , ~xN) of the positions ~x1, . . . , ~xN of the particles.
Approximating the Hilbert space H of the single particle by a finite basis set with d
basis functions, the N -particle basis approximated by the same finite basis set for single
particles needs dN basis functions.

This exponential scaling of the Hilbert space dimension with the number of particles
is a big challenge. Even in the simplest case – a spin-1/2 with d = 2, the basis forN = 30
spins is already of of size 230 ≈ 109. A single complex vector needs 16 GByte of memory
and will not fit into the memory of your personal computer anymore.
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This challenge will be to addressed later in this course by learning about

1. approximative methods, reducing the many-particle problem to a single-particle
problem

2. quantum Monte Carlo methods for bosonic and magnetic systems

3. brute-force methods solving the exact problem in a huge Hilbert space for modest
numbers of particles

4.2 Indistinguishable particles

4.2.1 Bosons and fermions

In quantum mechanics we assume that elementary particles, such as the electron or
photon, are indistinguishable: there is no serial number painted on the electrons that
would allow us to distinguish two electrons. Hence, if we exchange two particles the
system is still the same as before. For a two-body wave function ψ(~q1, ~q2) this means
that

ψ(~q2, ~q1) = eiφψ(~q1, ~q2), (4.2)

since upon exchanging the two particles the wave function needs to be identical, up to
a phase factor eiφ. In three dimensions the first homotopy group is trivial and after
doing two exchanges we need to be back at the original wave function1

ψ(~q1, ~q2) = eiφψ(~q2, ~q1) = e2iφψ(~q1, ~q2), (4.3)

and hence e2iφ = ±1:
ψ(~q2, ~q1) = ±ψ(~q1, ~q2) (4.4)

The many-body Hilbert space can thus be split into orthogonal subspaces, one in which
particles pick up a − sign and are called fermions, and the other where particles pick
up a + sign and are called bosons.

Bosons

For bosons the general many-body wave function thus needs to be symmetric under
permutations. Instead of an arbitrary wave function ψ(~q1, . . . , ~qN) of N particles we
use the symmetrized wave function

Ψ(S) = S+ψ(~q1, . . . , ~qN) ≡ NS
∑
p

ψ(~qp(1), . . . , ~qp(N)), (4.5)

where the sum goes over all permutations p of N particles, and NS is a normalization
factor.

1As a side remark we want to mention that in two dimensions the first homotopy group is Z and not
trivial: it matters whether we move the particles clock-wise or anti-clock wise when exchanging them,
and two clock-wise exchanges are not the identity anymore. Then more general, anyonic, statistics are
possible.
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Fermions

For fermions the wave function has to be antisymmetric under exchange of any two
fermions, and we use the anti-symmetrized wave function

Ψ(A)S−ψ(~q1, . . . , ~qN) ≡ NA
∑
p

sgn(p)ψ(~qp(1), . . . , ~qp(N)), (4.6)

where sgn(p) = ±1 is the sign of the permutation and NA again a normalization factor.
A consequence of the antisymmetrization is that no two fermions can be in the same

state as a wave function
ψ(~q1, ~q2) = φ(~q1)φ(~q2) (4.7)

since this vanishes under antisymmetrization:

Ψ(~q1, ~q2) = ψ(~q1, ~q2)− ψ(~q2, ~q1) = φ(~q1)φ(~q2)− φ(~q2)φ(~q1) = 0 (4.8)

Spinful fermions

Fermions, such as electrons, usually have a spin-1/2 degree of freedom in addition
to their orbital wave function. The full wave function as a function of a generalized
coordinate ~x = (~q, σ) including both position ~q and spin σ.

4.2.2 The Fock space

The Hilbert space describing a quantum many-body system with N = 0, 1, . . . ,∞
particles is called the Fock space. It is the direct sum of the appropriately symmetrized
single-particle Hilbert spaces H:

∞⊕
N=0

S±H⊗n (4.9)

where S+ is the symmetrization operator used for bosons and S− is the anti-symmetrization
operator used for fermions.

The occupation number basis

Given a basis {|φ1〉, . . . , |φL〉} of the single-particle Hilbert space H, a basis for the
Fock space is constructed by specifying the number of particles ni occupying the single-
particle wave function |f1〉. The wave function of the state |n1, . . . , nL〉 is given by the
appropriately symmetrized and normalized product of the single particle wave functions.
For example, the basis state |1, 1〉 has wave function

1√
2

[φ1(~x1)φ2(~x2)± φ1(~x2)φ2(~x1)] (4.10)

where the + sign is for bosons and the − sign for fermions.
For bosons the occupation numbers ni can go from 0 to ∞, but for fermions they

are restricted to ni = 0 or 1 since no two fermions can occupy the same state.
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The Slater determinant

The antisymmetrized and normalized product of N single-particle wave functions φi
can be written as a determinant, called the Slater determinant

S−
N∏
i1

φi(~xi) =
1√
N

∣∣∣∣∣∣∣
φ1(~x1) · · · φN(~x1)

...
...

φ1(~xN) · · · φN(~xN)

∣∣∣∣∣∣∣ . (4.11)

Note that while the set of Slater determinants of single particle basis functions forms
a basis of the fermionic Fock space, the general fermionic many body wave function is a
linear superposition of many Slater determinants and cannot be written as a single Slater
determinant. The Hartee Fock method, discussed below, will simplify the quantum
many body problem to a one body problem by making the approximation that the
ground state wave function can be described by a single Slater determinant.

4.2.3 Creation and annihilation operators

Since it is very cumbersome to work with appropriately symmetrized many body wave
functions, we will mainly use the formalism of second quantization and work with
creation and annihilation operators.

The annihilation operator ai,σ associated with a basis function |φi〉 is defined as the
result of the inner product of a many body wave function |Ψ〉 with this basis function
|φi〉. Given an N -particle wave function |Ψ(N)〉 the result of applying the annihilation
operator is an N − 1-particle wave function |Ψ̃(N)〉 = ai|Ψ(N)〉. It is given by the
appropriately symmetrized inner product

Ψ̃(~x1, . . . , ~xN−1) = S±
∫
d~xNf

†
i (~xN)Ψ(~x1, . . . , ~xN). (4.12)

Applied to a single-particle basis state |φj〉 the result is

ai|φj〉 = δij|0〉 (4.13)

where |0〉 is the “vacuum” state with no particles.
The creation operator a†i is defined as the adjoint of the annihilation operator ai.

Applying it to the vacuum “creates” a particle with wave function φi:

|φi〉 = a†i |0〉 (4.14)

For sake of simplicity and concreteness we will now assume that the L basis functions
|φi〉 of the single particle Hilbert space factor into L/(2S + 1) orbital wave functions
fi(~q) and 2S + 1 spin wave functions |σ〉, where σ = −S,−S + 1, ..., S. We will write
creation and annihilation operators a†i,σ and ai,σ where i is the orbital index and σ the
spin index. The most common cases will be spinless bosons with S = 0, where the spin
index can be dropped and spin-1/2 fermions, where the spin can be up (+1/2) or down
(−1/2).
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Commutation relations

The creation and annihilation operators fulfill certain canonical commutation relations,
which we will first discuss for an orthogonal set of basis functions. We will later gener-
alize them to non-orthogonal basis sets.

For bosons, the commutation relations are the same as that of the ladder operators
discussed for the harmonic oscillator (2.62):

[ai, aj] = [a†i , a
†
j] = 0 (4.15)

[ai, a
†
j] = δij. (4.16)

For fermions, on the other hand, the operators anticommute

{a†jσ′ , aiσ} = {a†iσ, ajσ′} = δσσ′δij

{aiσ, ajσ′} = {a†iσ, a
†
jσ′} = 0. (4.17)

The anti-commutation implies that

(a†i )
2 = a†ia

†
i = −a†ia

†
i (4.18)

and that thus
(a†i )

2 = 0, (4.19)

as expected since no two fermions can exist in the same state.

Fock basis in second quantization and normal ordering

The basis state |n1, . . . , nL〉 in the occupation number basis can easily be expressed in
terms of creation operators:

|n1, . . . , nL〉 =
L∏
i=1

(a†i )
ni|0〉 = (a†1)

n1(a†2)
n2 · · · (a†L)nL |0〉 (4.20)

For bosons the ordering of the creation operators does not matter, since the operators
commute. For fermions, however, the ordering matters since the fermionic creation
operators anticommute: and a†1a

†
2|0〉 = −a†1a

†
2|0〉. We thus need to agree on a specific

ordering of the creation operators to define what we mean by the state |n1, . . . , nL〉.
The choice of ordering does not matter but we have to stay consistent and use e.g. the
convention in equation (4.20).

Once the normal ordering is defined, we can derive the expressions for the matrix
elements of the creation and annihilation operators in that basis. Using above normal
ordering the matrix elements are

ai|n1, . . . , ni, . . . , nL〉 = δni,1(−1)
Pi−1

j=1 ni|n1, . . . , ni − 1, . . . , nL〉 (4.21)

a†i |n1, . . . , ni, . . . , nL〉 = δni,0(−1)
Pi−1

j=1 ni|n1, . . . , ni + 1, . . . , nL〉 (4.22)

where the minus signs come from commuting the annihilation and creation operator to
the correct position in the normal ordered product.
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4.2.4 Nonorthogonal basis sets

In simulating the electronic properties of atoms and molecules below we will see that
the natural choice of single particle basis functions centered around atoms will nec-
essarily give a non-orthogonal set of basis functions. This is no problem, as long as
the definition of the annihilation and creation operators is carefully generalized. For
this generalization it will be useful to introduce the fermion field operators ψ†σ(~r) and
ψσ(~r), creating and annihilating a fermion localized at a single point ~r in space. Their
commutation relations are simply

{ψ†σ′(~r), ψσ(~r′)} = {ψ†σ(~r), ψσ′(~r′)} = δσσ′δ(~r − ~r′)
{ψσ(~r), ψσ′(~r′)} = {ψ†σ(~r), ψ

†
σ′(
~r′)} = 0. (4.23)

The scalar products of the basis functions define a matrix

Sij =

∫
d3~rf∗i (~r)fj(~r), (4.24)

which is in general not the identity matrix. The associated annihilation operators aiσ
are again defined as scalar products

aiσ =
∑
j

(S−1)ij

∫
d3~rf∗j (~r)ψσ(~r). (4.25)

The non-orthogonality causes the commutation relations of these operators to differ
from those of normal fermion creation- and annihilation operators:

{a†iσ, ajσ′} = δσσ′(S
−1)ij

{aiσ, ajσ′} = {a†iσ, a
†
jσ′} = 0. (4.26)

Due to the non-orthogonality the adjoint a†iσ does not create a state with wave function
fi. This is done by the operator â†iσ, defined through:

â†iσ =
∑
j

Sjia
†
iσ, (4.27)

which has the following simple commutation relation with ajσ:

{â†iσ, ajσ} = δij. (4.28)

The commutation relations of the â†iσ and the âjσ′ are:

{â†iσâjσ′} = δσσ′Sij

{âiσ, âjσ′} = {â†iσ, â
†
jσ′} = 0. (4.29)

We will need to keep the distinction between a and â in mind when dealing with
non-orthogonal basis sets.
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