

Computational Quantum Physics Exercise 1

FS 10 Prof. M. Troyer, Prof. P. de Forcrand

Problem 1.1 Anharmonic oscillator

In this exercise we will calculate properties of the anharmonic oscillator. The quantum mechanical description is based on an eigenvalue problem (the stationary Schrödinger equation),

$$H|\Psi\rangle = E|\Psi\rangle \tag{1}$$

where

- $|\Psi\rangle \in \mathcal{H}$ is a vector in some Hilbert space \mathcal{H} ,
- H is the Hamilton operator which acts on vectors in \mathcal{H} ,
- E are the energy eigenvalues.

To solve this problem, we will choose a basis set and truncate to a finite dimension, set up the eigenvalue problem and find the eigenvalues numerically.

The Hamiltonian of the anharmonic oscillator is given by

$$H = H_{\text{kinetic}} + H_{\text{harmonic}} + H_{\text{anharmonic}} \tag{2}$$

$$= \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 + Kx^4, \tag{3}$$

where x and p are operators that generally do not commute, $xp - px \neq 0$.

The harmonic part of this Hamiltonian can be written as

$$H_{\text{harmonic}} = \hbar\omega(a^{\dagger}a + \frac{1}{2}) \tag{4}$$

with the operators a and a^{\dagger} defined by

$$a = \sqrt{\frac{m\omega}{2\hbar}}x + \frac{ip}{\sqrt{2m\hbar\omega}}\tag{5}$$

$$a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} x - \frac{ip}{\sqrt{2m\hbar\omega}},\tag{6}$$

where $[a, a^{\dagger}] = 1$.

The eigenstates $|n\rangle$ of the count operator $N=a^{\dagger}a$ build a natural set of basis states for the harmonic oscillator. Their energy eigenvalues are given by $\langle n|H_{harm}|n\rangle=\hbar\omega(n+\frac{1}{2})$. We will use this as a basis set for the anharmonic oscillator, but truncate at a finite n.

- 1. Using the definitions of a and a^{\dagger} , express the anharmonic part of the oscillator in second-quantized form.
- 2. Calculate the non-vanishing matrix elements of \mathcal{H} in the basis $|n\rangle$.
- 3. Set up the matrix and diagonalize it numerically for finite n and small K.

Problem 1.2 1-D quantum scattering problem

We consider a particle in one dimension, which is scattered at a potential barrier. This problem can be numerically solved using the Numerov algorithm.

Proceed as described in the lecture notes in section 3.1.2. You can use a constant potential (V = 1) in the interval [0, a].

- 1. Observe the tunneling effect for energies $E \in [0, V]$, where the transmission probability $T = 1/|A|^2$ is non-vanishing.
- 2. Plot T versus the barrier width a and observe the exponential decay.

This dependency T(a) plays a crucial role for the realization of the scanning tunneling microscope (STM). (Review of Modern Physics 59, 615 (1987). Nobel prize 1986).