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Why gauge symmetry?

Gauge symmetry

- possibility to chose freely a local parameter without
changing the physics

- o�ers a way to describe interactions due to invariance
properties of Lagrangians

Christopher Cedzich Yang-Mills Theory and the QCD Lagrangian



Overview
Introduction

Gauge Symmetries
The QCD Lagrangian

Introduction

Why gauge symmetry?
Gauge symmetry

- possibility to chose freely a local parameter without
changing the physics

- o�ers a way to describe interactions due to invariance
properties of Lagrangians

Christopher Cedzich Yang-Mills Theory and the QCD Lagrangian



Overview
Introduction

Gauge Symmetries
The QCD Lagrangian

Introduction

Why gauge symmetry?
Gauge symmetry

- possibility to chose freely a local parameter without
changing the physics

- o�ers a way to describe interactions due to invariance
properties of Lagrangians

Christopher Cedzich Yang-Mills Theory and the QCD Lagrangian



Overview
Introduction

Gauge Symmetries
The QCD Lagrangian

Abelian gauge symmetry
Non-abelian gauge symmetry

Abelian gauge symmetry

In QED: Lagrangian is invariant under local phase rotation.
Not a result of the theory but an assumption that determines
the theory.

Assume the theory has to be invariant under

ψ(x) −→ e iα(x)ψ(x) (1)

and expand to �rst order in α

ψ(x) −→ ψ(x) + iα(x)ψ(x) (2)

Try to construct a derivative since the Lagrangian L will
eventually contain derivatives of the �eld:

nµ∂µψ = lim
ε→0

ψ(x + εn)− ψ(x)

ε
(3)
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=⇒ problems ↔ don't know how to take the di�erence of 2
�elds that live in di�erent spaces

=⇒ need a quantity that compares the 2 �elds ⇒ called
comparator.
We require it to be a pure phase and to transform according to

e iϕ(y ,x) =: U(y , x) −→ e iα(y)U(y , x)e−iα(x) (4)

=⇒ di�erence makes sense ⇔ ψ(y) and U(y , x)ψ(x) have the
same transformation law.
This de�nes the covariant derivative:

nµDµψ = lim
ε→0

ψ(x + εn)− U(x + εn, x)ψ(x)

ε
(5)
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and we can �nd an explicit expression via the expansion of the
comparator

U(x + εn, x) = U(x , x)︸ ︷︷ ︸
:=1

−ieεnµAµ(x) +O(ε2) (6)

=⇒ nµDµψ = lim
ε→0

ψ(x + εn)− (1− ieεnµAµ(x))ψ(x)

ε

= lim
ε→0

1

ε
(ψ(x + εn)− ψ(x))︸ ︷︷ ︸

∂µψ(x)

+ienµAµ(x)ψ(x)

(7)

⇒ Dµ = ∂µ + ieAµ(x) (8)
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Aµ(x) is called gauge �eld and its transformation law is given
by

Aµ(x) −→ Aµ(x)− 1

e
∂µα(x) (9)

needed to �x the gauge invariance of the covariant derivative:

Dµψ(x)→
(
∂µ + ie(Aµ(x)− 1

ε
∂µα)

)
e iα(x)ψ(x)

= e iα(x) (∂µ + ieAµ(x))ψ(x)

+ e iα(x)i(∂µα(x))ψ(x)− ie

e
(∂µα(x))ψ(x)

= e iα(x)(∂µ + ieAµ(x))ψ(x)

= e iα(x)Dµψ(x) (10)
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Our Lagrangian is a function

L = L(ψ(x),Dψ(x),Aµ(x), t) (11)

=⇒ need to include a kinetic term Aµ(x).

by expanding the comparator to order ε2 and consider it
around an in�nitesimal closed rectangular loop

U(x) := U(x , x + ε2̂)U(x + ε2̂, x + ε1̂ + ε2̂)

×U(x + ε1̂ + ε2̂, x + ε1̂)U(x + ε1̂, x)
(12)
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using

U(x + εn, x) = exp
(
−ieεnµAµ(x + ε

2
n) +O(ε3)

)
(13)

we �nd

U(x) = 1− iε2e (∂µAν(x)− ∂νAµ(x))︸ ︷︷ ︸
:=Fµν

+O(ε3) (14)

which depends only on Aµ(x) ⇒ gauge invariant
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Field-strength tensor

Fµν =̂ recognized as the QED �eld-strength tensor which is
given by

Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 (15)

where

Aµ =
(
φ
c
, ~A
)

(16)

∂µ =
(
∂0, ~∇

)
(17)
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QED Lagrangian

requirements to the Lagrangian L:
- 4-dimensional

- Lorentz covariant

- gauge invariant

Most general L which ful�lls requirements is given by

L = ψ̄(i /D)ψ −mψ̄ψ − 1

4
(Fµν)2 (18)

kinetic and potential term for the �elds ψ as well as for the
gauge �eld Aµ:

−1

4
(Fµν)2 = 1

2

(
E 2 − B2

)
(19)
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Non-abelian gauge symmetry

In 1954 Yang and Mills considered the isospin-doublet and
found a general gauge invariant Lagrangian.
isospin doublet ⇔ state which remains invariant under
spin-transformations.

⇒ consider the doublet of �elds

ψ =

(
ψ1(x)
ψ2(x)

)
(20)

and the local transformation

ψ −→ exp

(
iαj(x)

σj

2

)
︸ ︷︷ ︸

:=V (x)

ψ (21)

where the σj

2
are the Pauli matrices.
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V (x) ∈ SU(2) ⇔ the Pauli matrices are the generators of a
Lie algebra LieSU(2)
They do not commute ⇒ non-abelian gauge symmetry

De�ne the comparator via its transformation law

U(y , x) −→ V (y)U(y , x)V †(x) (22)

with the expansion

U(x + εn, x) = U(x , x)︸ ︷︷ ︸
:=1

+igεnµAi
µ

σi

2
+O(ε2) (23)

and going through the same steps as before gives the
covariant derivative as

Dµ = ∂µ − igAi
µ

σi

2
(24)

Christopher Cedzich Yang-Mills Theory and the QCD Lagrangian



Overview
Introduction

Gauge Symmetries
The QCD Lagrangian

Abelian gauge symmetry
Non-abelian gauge symmetry

V (x) ∈ SU(2) ⇔ the Pauli matrices are the generators of a
Lie algebra LieSU(2)
They do not commute ⇒ non-abelian gauge symmetry
De�ne the comparator via its transformation law

U(y , x) −→ V (y)U(y , x)V †(x) (22)

with the expansion

U(x + εn, x) = U(x , x)︸ ︷︷ ︸
:=1

+igεnµAi
µ

σi

2
+O(ε2) (23)

and going through the same steps as before gives the
covariant derivative as

Dµ = ∂µ − igAi
µ

σi

2
(24)

Christopher Cedzich Yang-Mills Theory and the QCD Lagrangian



Overview
Introduction

Gauge Symmetries
The QCD Lagrangian

Abelian gauge symmetry
Non-abelian gauge symmetry

Inserting (23) in (22) and doing some algebra gives the
transformation law of the gauge �eld up to order ε2 as

Ai
µ

σi

2
−→ Ai

µ

σi

2
+

1

g
(∂µα

i)
σi

2
+ i

[
αi σ

i

2
,Aj

µ

σj

2

]
+ . . . (25)

compared to the abelian case: new term involving the
commutator of the generators of our transformation group.
Doing some algebra we see that again the covariant derivative
of (20) transforms properly:

Dµψ −→ exp

(
iαj σ

j

2

)
︸ ︷︷ ︸

=V (x)

Dµψ (26)
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kinetic energy term

As in the abelian case we have to �nd a "kinetic energy term"
for the gauge �eld.
⇒ take the commutator of two covariant derivatives, which is
gauge invariant since the covariant derivatives are, i.e.

[Dµ,Dν ]ψ −→ V (x) [Dµ,Dν ]ψ (27)

and we �nd

[Dµ,Dν ]ψ = −ig
(
∂µA

j
ν

σj

2
− ∂νAi

µ

σi

2
− ig

[
Ai
µ

σi

2
,Aj

ν

σj

2

])
ψ

≡ −igF i
µν

σi

2
ψ (28)

where F i
µν =̂ �eld-strength tensor of the gauge �eld.
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Field-strength tensor in the SU(2)

The �eld-strength tensor can be extracted to give

F i
µν = ∂µA

j
ν − ∂νAi

µ − ig

[
Ai
µ

σi

2
,Aj

ν

σj

2

]
2

σi

= ∂µA
j
ν − ∂νAi

µ + gεijkAj
µA

k
ν . (29)

where as in the transformation law for Ai
µ a commutator

appears.
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Lie group ⇔ Lie algebra

A Lie group is:

- a continuous transformation group

- a smooth manifold

A Lie algebra

- is the tangential space of a Lie group at the identity

- completely captures the local group structure

- can be represented by the inverse exponential map of a
Lie group

=⇒ symmetry transformations as elements of the Lie group

ψ(x) −→ V (x)ψ(x) (30)

V (x) ∈ SU(N).
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The exponential map has as arguments elements of the Lie
algebra and can be expanded as

V (x) = 1 + iαa(x)ta +O(α2) (31)

where the ta are the generators of the algebra. An algebra is
assigned with a multiplication law.
In Lie algebras take the commutator[

ta, tb
]

= if abc tc (32)

The covariant derivative in general given as

Dµ = ∂µ − igAa
µt

a (33)
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in�nitesimal transformation of Aa
µ is given by

Aa
µ −→ Aa

µ +
1

g
∂µα

a + f abcA
b
µα

c (34)

From this and in analogy to the SU(2) case the �nite
transformation yields

Aa
µ(x)ta −→ V (x)

(
Aa
µ(x)ta +

i

g
∂µ

)
V †(x) (35)
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Field strength tensor

The �eld strength tensor is de�ned by

[Dµ,Dν ]ψ = ig
(
∂µA

a
ν − ∂νAa

µ + gf abcAb
µA

c
ν

)︸ ︷︷ ︸
F a

µν

taψ (36)

= −igF a
µνt

aψ (37)

and its transformation law by

F a
µνt

a −→V (x)F b
µνt

bV †(x) (38)

=F a
µνt

a − f abcαcF b
µνt

a (39)

⇒ not gauge invariant anymore!
Reasonable since it has to re�ect the algebra's structure.
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Field strength tensor

Construct gauge invariant terms:

Lgauge = −1
2
Tr
[

(Fµν)2
]

= −1
4

(
F a
µν

)2
(40)

as one can verify

−1
4

(
F a
µν

)2 −→Tr [V (x)]

(
−1
4

(
F a
µν

)2)
Tr
[
V †(x)

]
(41)

=− 1

4

(
F a
µν

)2
(42)
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Field strength tensor

Notice: the de�nition of the �eld strength tensor contains new
terms.
⇒ sel�nteraction of the gauge �elds
⇒ gauge bosons carry themselves charge
⇒ can hypothetically form particles only by themself
("glueballs")
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Lagrangian density

Now we have all ingredients for a gauge invariant Lagrangian:

- kinetic term for ψ given by the Dirac formalism

- mass term for ψ, i.e. mψ̄ψ

- kinetic and potential energy term for the gauge �eld Aa
µ

=⇒ L = ψ̄(i /D)ψ − 1

4

(
F a
µν

)2 −mψ̄ψ (43)

most general gauge inv. Lagrangian (Yang-Mills Lagrangian)
A mass term for the gauge �eld is ruled out because it can not
be made gauge invariant
⇒ gauge bosons have to be massless!
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- kinetic and potential energy term for the gauge �eld Aa
µ

=⇒ L = ψ̄(i /D)ψ − 1

4

(
F a
µν

)2 −mψ̄ψ (43)

most general gauge inv. Lagrangian (Yang-Mills Lagrangian)
A mass term for the gauge �eld is ruled out because it can not
be made gauge invariant
⇒ gauge bosons have to be massless!
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How to �nd (40)?

Consider a general Lagrangian

L = L
(
ψ,Dµψ,DµDνψ, . . . , F

a
µν ,DσF

a
µν ,DσDρF

a
µν , . . .

)
(44)

and the invariance condition

∂L
∂ψ

itaψ +
∂L

∂(Dµψ)
ita(Dµψ) + · · ·+ ∂L

∂F a
µν

δF a
µν

+
∂L

∂DσF a
µν

δDσF
a
µν + · · · = 0

(45)
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How to �nd (40)?

Other conditions on L:
- Parity conservation

- Lorentz invariance

- L must contain a factor ∝ (∂µAν − ∂νAµ)2

dictates the gauge �eld term to be

LF = −1
4
gabF

a
µνF

bµν (46)

with gab a constant, real, symmetric matrix
with right scalings it can be taken to be gab = δab

=⇒ LF = −1
4
F a
µνF

a µν (47)
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Conservation laws

Euler-Lagrange equations for gauge �eld Aa
µ yield:

∂µ
∂L

∂(∂µAa
ν)

=
∂L
∂Aa

ν

(48)

=⇒ −∂µF a µν = −F c νµf cab Ab
µ − i

∂(ψ̄(i /D −m)ψ)

∂Dνψ
taψ︸ ︷︷ ︸

:=J a ν

(49)

=⇒ ∂µF
a µν = −J a ν (50)

easy to show that
∂νJ a ν = 0 (51)

=⇒ J a ν is conserved.
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Conservation laws

BUT: partial derivatives ⇔ gauge invariance not guaranteed.
Rewrite the E.-L.-equation

DλF
a µν = ∂λF

a µν − gf acb Ab
λF

a µν (52)

and we conclude

DµF
a µν = −J a ν (53)

but with a di�erent conserved current

=⇒ J a ν = −i ∂(ψ̄(i /D −m)ψ)

∂Dνψ
taψ (54)
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Conservation laws

which is conserved since using

[Dν ,Dµ]F a ρσ = −f acbF c
νµF

b σρ (55)

we see that

DνJ a ν = 0 (56)

and guaranteed gauge invariance.
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Motivation

Late 1950s and beginning of the 1960s:

- more and more hadrons were discovered in collider
experiments

- in Deep Inelastic Scattering it was shown that hadrons
are not elementary particles

⇒ Solution by Gell-Mann and Zweig: hadrons are built up
from two (mesons) or three (baryons) fermionic particles,
called quarks.
⇒ min. 3 "'�avors"' were needed ⇒ SU(3)�avor taken as
transformation group
In the beginning quarks were supposed to be hypothetical
particles since they could not be observed
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BUT: by the investigation of the ∆++ hadron build up of 3
up-quarks new problems arised:

The spin-statistic problem

Wave-function in the ground-state (L = 0):

ψ∆++ = ψspin ⊗ ψ�avor ⊗ ψspatial (57)

and
∆++ = u(↑)u(↑)u(↑) (58)

∆++ is symmetric ⇔ needs to be antisym. (s = 3

2
)
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Solution by Greenberg (1964) extended by Gell-Mann (1972):
introduce an internal quantum number:

COLOR

and color-transformations as an exact SU(3) symmetry
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transformation law of the SU(3) color group:

q −→ q′ = exp

[
−iαk

λk

2

]
︸ ︷︷ ︸

:=V (x)

q (59)

q: fermionic quark �eld
where the group reads

SU(3) =
{
A ∈ GL(3,C)|A†A = 1, detA = 1

}
(60)

and the generators of the corresponding Lie algebra are
hermitian and

unimodularity ⇔ Tr[λk ] = 0 (61)
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Gell-Mann matrices

generators of the algebra represented by Gell-Mann matrices

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0


λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0


λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 =

1 0 0
0 1 0
0 0 −2


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Lagrangian and gluons

Nambu, Fritsch, Gell-Mann and Leutwyler:
color charges are sources of gauge �eld that transfer the
strong interaction
Write Yang-Mills Lagrangian for SU(3):

L = q̄(x)
(
i /D −m

)
q(x)− 1

2
Tr
[

(Gµν)2
]

(62)

with gluon �elds G k
µ (x) de�ned by

Gµν = DνGµ − DµGν (63)

= ∂νGµ − ∂µGµ − igs [Gµ,Gν ] (64)

and covariant derivative

Dµ = ∂µ − igsG
k
µ

λk

2
(65)
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Interpretation of Lagrangian ingredients

L = q̄(x)
(
i /D −m

)
q(x)− 1

2
Tr
[

(Gµν)2
]

(66)

=q̄(x)
(
i /∂ −m

)
q(x)− 1

2
Tr
[

(∂νGµ − ∂µGµ)2
]

+ gs q̄(x)/G
k
(x)

λk

2
q(x)

+ igs Tr (∂νGµ − ∂µGν) [Gµ,Gν ]

+
1

2
g 2

s Tr [Gµ,Gν ]2

(67)
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Thanks

Many thanks to

Michael Fromm

Dr. Philippe de Forcrand
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