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Why gauge symmetry?
Gauge symmetry
- possibility to chose freely a local parameter without
changing the physics
- offers a way to describe interactions due to invariance
properties of Lagrangians
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Abelian gauge symmetry

In QED: Lagrangian is invariant under local phase rotation.
Not a result of the theory but an assumption that determines
the theory.
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Abelian gauge symmetry

In QED: Lagrangian is invariant under local phase rotation.
Not a result of the theory but an assumption that determines

the theory.
Assume the theory has to be invariant under
U(x) — e“Wy(x) (1)
and expand to first order in «
(x) — (x) + ia(x)(x) (2)
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Abelian gauge symmetry

In QED: Lagrangian is invariant under local phase rotation.
Not a result of the theory but an assumption that determines

the theory.
Assume the theory has to be invariant under
U(x) — e“Wy(x) (1)
and expand to first order in «
(x) — (x) + ia(x)(x) (2)

Try to construct a derivative since the Lagrangian £ will
eventually contain derivatives of the field:

oy — lim L€M) = V() (3)

e—0 €
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Gauge Symmetries Non-abelian gauge symmetry

— problems < don’t know how to take the difference of 2
fields that live in different spaces
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— problems < don’t know how to take the difference of 2
fields that live in different spaces
— need a quantity that compares the 2 fields = called

comparator.
We require it to be a pure phase and to transform according to

) = U(y, x) — eV U(y, x)e ) (4)
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— problems < don’t know how to take the difference of 2
fields that live in different spaces

— need a quantity that compares the 2 fields = called
comparator.

We require it to be a pure phase and to transform according to

) = U(y, x) — eV U(y, x)e ) (4)

— difference makes sense < (y) and U(y, x)1(x) have the
same transformation law.
This defines the covariant derivative:

D5l LU )~ U en X))

e—0 €

(5)
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and we can find an explicit expression via the expansion of the
comparator

U(x + en, x) = U(x, x) —ieen"A,(x) + O(€?) (6)

P(x + en) — (1 — ieen”A,(x))(x)

€

— "D,y = lim

= lim %(w(x +en) — P(x)) +ien" A, (x)¥(x)

au;/’,(x)
(7)
= D, = 8, + ieA,(x) (8)
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A,(x) is called gauge field and its transformation law is given

by X
AL(3) — A~ <D,0(x) )

needed to fix the gauge invariance of the covariant derivative:
1 .
D) — (0 ie(A, ) — 19,0) ) € 0()
&™) (9, + ieA, (x)) ¥(x)

+ & Oi(D,0())(x) — (@0(x))0(x)
= 090, + A, (x))(x)
— &°09D,1(x) (10)
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Our Lagrangian is a function

L= L((x), Dy(x), Au(x), t) (11)

—> need to include a kinetic term A, (x).
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Our Lagrangian is a function
L = L(Y(x), DyY(x), A (x), t) (11)

—> need to include a kinetic term A, (x).
by expanding the comparator to order €2 and consider it
around an infinitesimal closed rectangular loop

z+e§

T a:#—fi

U(x) :== U(x,x + Q)U(x + 2, x + el + €2)
xU(x + el + 2, x + el)U(x + €i, x)
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using
U(x +en, x) = exp (—ieen“Au(x + 5n) + (9(63)) (13)
we find

U(x) = 1 — icte (0,A,(x) — B,A(x) +O()  (14)

" J
-

=Fu

which depends only on A,(x) = gauge invariant
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Field-strength tensor

F,. = recognized as the QED field-strength tensor which is

given by
0 E E E
|-E 0 -B. B,
Fiw —-E, B, 0 —Bx (15)
—-E, -B, Bk 0
where
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QED Lagrangian

requirements to the Lagrangian L:
- 4-dimensional
- Lorentz covariant
- gauge invariant
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QED Lagrangian

requirements to the Lagrangian L:
- 4-dimensional
- Lorentz covariant
- gauge invariant
Most general £ which fulfills requirements is given by

L =4(iByg — minp — 3(Fu)? (18)
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QED Lagrangian

requirements to the Lagrangian L:
- 4-dimensional
- Lorentz covariant
- gauge invariant
Most general £ which fulfills requirements is given by

L =4(iByg — minp — 3(Fu)? (18)

kinetic and potential term for the fields 1) as well as for the
gauge field A,

(Fu) =} (E° - BY) (19)
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Non-abelian gauge symmetry

In 1954 Yang and Mills considered the isospin-doublet and

found a general gauge invariant Lagrangian.
isospin doublet < state which remains invariant under

spin-transformations.
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Non-abelian gauge symmetry

In 1954 Yang and Mills considered the isospin-doublet and
found a general gauge invariant Lagrangian.

isospin doublet < state which remains invariant under
spin-transformations. = consider the doublet of fields

(50 2

and the local transformation

) — exp (IO/J(X)%J> P (21)
N ~0 _

where the %’ are the Pauli matrices.
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Gauge Symmetries Non-abelian ge symmetry

V(x) € SU(2) < the Pauli matrices are the generators of a
Lie algebra LieSU(2)
They do not commute =- non-abelian gauge symmetry
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Gauge Symmetries Non-abelian gauge symmetry

V(x) € SU(2) < the Pauli matrices are the generators of a
Lie algebra LieSU(2)

They do not commute =- non-abelian gauge symmetry
Define the comparator via its transformation law

Uly,x) — V(y)U(y,x)V'(x) (22)

with the expansion

_ : i ig_i 2
U(x +en,x) = U(x, x) +igen" A, >+ O(e?)  (23)
=1

and going through the same steps as before gives the
covariant derivative as
7

H2
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Gauge Symmetries Non-abelian ge symmetry

Inserting (23) in (22) and doing some algebra gives the
transformation law of the gauge field up to order €* as

-O'i i i -O'i -O'j
AL A (g i AT (25
wo T 2+g( O‘)z [az’ 2}+ (25)

Christopher Cedzich Yang-Mills Theory and the QCD Lagrangian



Abelian gauge symmetry
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Inserting (23) in (22) and doing some algebra gives the
transformation law of the gauge field up to order €* as
Al o A o 1 Py o [0 Ajaj

N§—> ME—}—E( Ma)§+l 0637 N? + ... (25)
compared to the abelian case: new term involving the
commutator of the generators of our transformation group.
Doing some algebra we see that again the covariant derivative
of (20) transforms properly:

D, — exp (iaj %J) D, (26)

—_———
=V/(x)
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kinetic energy term

As in the abelian case we have to find a "kinetic energy term"
for the gauge field.

= take the commutator of two covariant derivatives, which is
gauge invariant since the covariant derivatives are, i.e.

[Dy; D] — V(x)[Dy, D] 9 (27)
and we find
— J i o' ; iii J U_j
[D,, D,y g (8A - 0,A,— vy —ig [A#Q,Ay2}>¢
= —igFliV%w (28)

P~ f :
where £/, = field-strength tensor of the gauge field.
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Field-strength tensor in the SU(2)

The field-strength tensor can be extracted to give

i i i iai ol 2
Fo = OA, — &,Au —ig [AME,AJ ] —

vo | o

= O, A, — O,A, + g™ AL AL (29)

where as in the transformation law for A;L a commutator
appears.
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Lie group < Lie algebra

A Lie group is:
- a continuous transformation group
- a smooth manifold
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Lie group < Lie algebra

A Lie group is:
- a continuous transformation group
- a smooth manifold
A Lie algebra
- is the tangential space of a Lie group at the identity
- completely captures the local group structure

- can be represented by the inverse exponential map of a
Lie group
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Lie group < Lie algebra

A Lie group is:
- a continuous transformation group
- a smooth manifold
A Lie algebra
- is the tangential space of a Lie group at the identity
- completely captures the local group structure
- can be represented by the inverse exponential map of a
Lie group
=—> symmetry transformations as elements of the Lie group

P(x) — V(x)p(x) (30)

V(x) € SU(N).
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The exponential map has as arguments elements of the Lie
algebra and can be expanded as

V(x) =14 ia?(x)t* + O(a?) (31)

where the t? are the generators of the algebra. An algebra is
assigned with a multiplication law.
In Lie algebras take the commutator

[£2,t°] = if2Pee (32)
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The exponential map has as arguments elements of the Lie
algebra and can be expanded as

V(x) =14 ia?(x)t* + O(a?) (31)

where the t? are the generators of the algebra. An algebra is
assigned with a multiplication law.
In Lie algebras take the commutator

[£2,t°] = if2Pee (32)
The covariant derivative in general given as

D, = 8, — igh2t® (33)
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infinitesimal transformation of A? is given by

a a 1 a a c
AL — A%+ Ec‘?ﬂ(x + bCAZa (34)

From this and in analogy to the SU(2) case the finite
transformation yields

AL(x)t7 — V() (%\Z(x)ta + é@u> Vi(x) (35)
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Field strength tensor

The field strength tensor is defined by

[Du DY = ig (0,4 — 0,45, + gf ™ ALA)) 7y (36)

N

= —igF2,t% (37)

and its transformation law by
Fat* —V(x)F) t°Vi(x) (38)
=F2t° — P Fp ¢ (39)
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Field strength tensor

The field strength tensor is defined by

[Du DY = ig (0,4 — 0,45, + gf ™ ALA)) 7y (36)

N

= —igF2,t% (37)

and its transformation law by
Fat* —V(x)F) t°Vi(x) (38)
=F2t° — P Fp ¢ (39)

= not gauge invariant anymore!
Reasonable since it has to reflect the algebra’s structure.
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Field strength tensor

Construct gauge invariant terms:

Lo = —= T [(FW)2] _ _%

. (F2)? (40)

1%
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Field strength tensor

Construct gauge invariant terms:

Lgange = —% Tr [(wa] - —% (F2,)° (40)

as one can verify

_% (F:u)z — Tr[V(x)] <—% (ij)z) Tr [VT(X)] (41)

— (R (42)
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Field strength tensor

Notice: the definition of the field strength tensor contains new
terms.

= selfinteraction of the gauge fields

= gauge bosons carry themselves charge

= can hypothetically form particles only by themself
("glueballs")
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Lagrangian density

Now we have all ingredients for a gauge invariant Lagrangian:

- kinetic term for ¢ given by the Dirac formalism
- mass term for 1, i.e. myn)

- kinetic and potential energy term for the gauge field A?

Christopher Cedzich Yang-Mills Theory and the QCD Lagrangian



Abelian gauge symmetry
Gauge Symmetries Non-abelian gauge symmetry

Lagrangian density

Now we have all ingredients for a gauge invariant Lagrangian:

- kinetic term for ¢ given by the Dirac formalism
- mass term for 1, i.e. myn)

- kinetic and potential energy term for the gauge field A?

—  L=9iD - % (F2,)* = mpy (43)

most general gauge inv. Lagrangian (Yang-Mills Lagrangian)
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Lagrangian density

Now we have all ingredients for a gauge invariant Lagrangian:

- kinetic term for ¢ given by the Dirac formalism
- mass term for 1, i.e. myn)

- kinetic and potential energy term for the gauge field A?

= L= (R - mie (#3)

most general gauge inv. Lagrangian (Yang-Mills Lagrangian)
A mass term for the gauge field is ruled out because it can not
be made gauge invariant

=- gauge bosons have to be massless!
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How to find (40)7

Consider a general Lagrangian

L =L (¢, Dy, DuDb,. .., F2, D,F2, DyD,F?, ...} (44)

) l’“” /,u/? 14 ;,“/7

and the invariance condition

oL oL oL
T~ ea it?(D Fa
%/t WY+ (Duq/;)'t( )+ - 8F35
or (45)
9,5, ————0D,F},+--- =0
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How to find (40)7

Other conditions on L:
- Parity conservation

- Lorentz invariance
- L must contain a factor « (9,A, — 8,,AM)2
dictates the gauge field term to be

1
Lr= ——gabFa Fuv (46)
with g,, a constant, real, symmetric matrix

with right scalings it can be taken to be g, = d.p

1 a rauv
— EF = _ZFHVF ® (47)
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Conservation laws

Euler-Lagrange equations for gauge field A% yield:

oL oL
= 4
o) ~ oA (48)
a uv cvugca 8(77;(142_ m)w) a
— —O,FM = —FVHRAL — D0 tq/j (49)
::;au
= 0,F" = -7J°" (50)
easy to show that
0,7 =0 (51)

= J?" is conserved.
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Conservation laws

BUT: partial derivatives < gauge invariance not guaranteed.
Rewrite the E.-L.-equation

DyF2H" = O\F2 1 — gf 2 ASF2H (52)
and we conclude
o (53)
but with a different conserved current

A0 — m)y)
aDuw

; jall:

t? (54)
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Conservation laws

which is conserved since using
[D,. D F?77 = —f3FS,F°7 (55)
we see that
D,Jg?" =0 (56)

and guaranteed gauge invariance.
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The QCD Lagrangian Ul QED

Motivation

Late 1950s and beginning of the 1960s:

- more and more hadrons were discovered in collider
experiments

- in Deep Inelastic Scattering it was shown that hadrons
are not elementary particles

= Solution by Gell-Mann and Zweig: hadrons are built up
from two (mesons) or three (baryons) fermionic particles,

called quarks.

= min. 3 "'flavors"’ were needed = SU(3)gavor taken as

transformation group

In the beginning quarks were supposed to be hypothetical
particles since they could not be observed
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The QCD Lagrangian and gluon fields

The QCD Lagrangian

BUT: by the investigation of the A** hadron build up of 3
up-quarks new problems arised:

The spin-statistic problem

Wave-function in the ground-state (L = 0):
¢A++ = ¢spin ® wﬂavor ® wspatial (57)

and

AT = u(T)u(T)u(T) (58)

AT is symmetric < needs to be antisym. (s = 3)
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The QCD Lagrangian and gluon fields

The QCD Lagrangian

Solution by Greenberg (1964) extended by Gell-Mann (1972):
introduce an internal quantum number:

COLOR

and color-transformations as an exact SU(3) symmetry
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The QCD Lagrangian and gluon fields

The QCD Lagrangian

transformation law of the SU(3) color group:

2

—_——
=V(x)

A
qg— q =exp {_’.@k_k} q (59)

q: fermionic quark field
where the group reads

SUB) = {A€ GLB3,C)|ATA=1,detA=1} (60)

and the generators of the corresponding Lie algebra are
hermitian and

unimodularity < Tr[A] =0 (61)
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The QCD Lagrangian Lagrangian and gluon fields

Gell-Mann matrices

generators of the algebra

010 0 —i 0 1 0 0
M=[100] X=[i 0 0] x=[0 -1 0
000 00 0 0 0 0
001 00 —i 000
M=[000] Xx=[00 0 =0 01
100 i 0 0 010
00 0 10 0
=100 —i] x=[01 o0
0i 0 00 —2

Christopher Cedzich Yang-Mills Theory and the QCD Lagrangian



\
The spin-statistic problem
The QCD Lagrangian The QCD Lagrangian and gluon fields

Lagrangian and gluons

Nambu, Fritsch, Gell-Mann and Leutwyler:
color charges are sources of gauge field that transfer the

strong interaction
Write Yang-Mills Lagrangian for SU(3):

— §(x) (i — m) q(x) — %Tr (Gw)]  (62)
with gluon fields G¥(x) defined by

G, =D,G, — D,G, (63)
=0,G, — 0,6, — igs [G,, G] (64)

and covariant derivative
D, =0, lgsGk /\zk (65)
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The QCD Lagrangian The QCD Lagrangian and gluon fields

Interpretation of Lagrangian ingredients

£ =7q(x) (i — m) q(x) — %Tr [(GW)2] (66)
=) (i — m) g(x) — 5 Tr [ (.G, — 0,6,
+ 83006 (0 q(x) -

+ igs Tr (0, G, — 0,G,) [Gy, G)
+ %&2 Tr[G,, GV]2
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The QCD Lagrangian The QCD Lagrangian and gluon fields

Thanks

Many thanks to
Michael Fromm

Dr. Philippe de Forcrand
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The QCD Lagrangian
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