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CHAPTER ITITI: IRREDUCIBL.S TENSOR REPRASENTATIONS OF G—L(lfl)5
SL(n), U(n) and SU(n)

In this chapter we construct the irreducible tensor repre-
centations of the full linear grouu and certain of its sub-
groups by specializing the reciprocity established in Theorem 3
of Chapter II to a recivrocity between GL(n) and the symmetric
group Sn'

Let V be an n-dimensional vector space over a field @
of characteristic 0. Let G = GL(V) be the group of all in-
vertible linear transformations on V. For a fixed m, let V® m
be the m-fold tensor product of V with itself; V®m con--

sists of all tenscors

. i i i i
u = 2__- vl®v2®...®vm,\,jevo
i
Let ie e 3 be a basis of V. The space V Y hos a
l; © 00 @ g n ’ (=) . R LD

basis consisting of the n tensors e, ®... ®e, , 1 £1. & n.
: i i J

Xym . 1 m
v @ in a natural way (tensor product

X®m

The group G acts on
representation), If Fei, we let ¥ denote the linear

transformation

w—> 1 ®m (F®... ®F) u = ZFV}QDFVJZ_@”“@FV;'
i

(1)
. . . m o i -
The mapnring I' —> F @ defines a representation of G in
, mo . . .
the tensor space V ® . We shall determine the irreducible
- - Xdm
G-submodules of V ® .

We attack this problem indirectly. Let us consider the symmetric

group Sm and the group algebra A = @ 'Sm . For each s eSm we

. . . o @m
can define the following action of s on the space V ’

s (vi® ...®v) =v ® - ®V _; (2)

s71(1) & (m)
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in other words, the result of applying s to the tensor
. .th . : .\th
vy ... ()'%n is to move the i~ factor A into the s(J_)JG

place. One immediately verifies that (2) defines a repre-

Om

. . Rm : .
sentation of S% in V Q§1> and thersfore V becomes a left
Ao

A-module. An element a & A viewed as o linear transformation

®m Qm

on V , is called a symmetry operator on V . Our first

@ m

observation is that the transformations F 2ll commute
with the symmetry operators. For this it is sufficient to
show

PO (s (v, @ @) =8 (FONv @ ... @T)

m

and this is obvious from the definitions. Now A = b Sm is

semi-gimple and hence we can apply the Theorem 3 of Chapter II

. . . N - X m
to determine the irreducible C-submodules of V 9 where
. ®n m
C = HomA (v , V'® ) .
\ ; - & m . s
These modules 211 hove the form eV , where e is gprimitive

idempotent in A, and for any prinitive idempotent e in A,
. m m . . .
either eV on _ 0 or eV"Qg is an irreducible C-submodule
m s - .
of V ® . The primitive idempotents have all been determined

in Chapter I.

Definition:

Let T ¢ G — GL(1) be a representation of the group G
in the vector space M over @. The @-subspace of Hom¢(M,M)
spanned by all the { (x) , x € G 3 is called the enveloping
algebra of T. It conegists of =11 linear combinations

m _ - -
*(Xl) e+ oA T(Xr) , X € G, o €& @,

OC1 i

Observe that the elements of the enveloping algebra need not
be invertible.

@ m

The following lemma shows that the C-submodules of V are

identical with the G-submodules of vV &% |
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Lemma 1:
v . @& m my o . .
Let C = Hom, (V , v ® ). Then C is the enveloping algebra

A

) m )
of the set of transforaations F ® e G

, G. Yherefore the

C—submodules of V‘ébm’are identical with the G-submodules
or v O™,

Proof:

we show first that it is sufficient to prove that any linear
function ¢ on C which vanishes on all the F Q’{)m9 FeG va-
nishes on all of C. Tet © = { # @0 p¢ ¢} ,E" = L ye
GL(V é@m) ; 9 (1) =0 = ¢ (y)=0 } and let & denote the
enveloping algebra of T. Clearly TC€ & ¢ ¢ and thus

A A I S R -
T D g D &7, But from the definition of &' we have at
A R W A L4 Ly
once T~ & & and therefore =8 , ET= & ‘
. . . oo s L ‘
For finite dimensional linear spaces £ = & , & =&

and the above charwct.risation of the cnveloning clgcbra is

b

=

proven,
Let ¥ € C ; then Yis described by its coefficients
y (319 coes s 119 ooy im) in a bagis, vhere

X(eil@; ®eim) = Z ejl® ®ejmx(319..o,3m ;

I
(ul’ Jm>
il, ceoy im). It is easy to verify that Y & C is equivalent

to the conditions

)

W (ayseesdys 3peeenip) =X(3 1 pevend g, 30 g seeed
(m) ( m)

s (1) s 1) s
(3)
L linear functional on C ascigns to cach Y € C an element of
4 given by ‘X“”?ji“(jl’°°'9jm§ Iiveees im) 3’(jlyco.jm;
il’ oo oy im) where the o's are fixed elements of @ assumed

_1(

without logs of generality to fulfill the symmetry conditions (3).
" 3 — ? ') < 1
If we put F e, = L. bj\§ji then by assumstion

ZE a (jl,...,jmg i1y eees %n)‘gjlil
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Let us renane the { ?j i-S calling them Q.l, ee L

Then (4) can be rewritten as a polynomial
k k

1
2 = ’ v n =
FCAL A ) - 28 (kpeeek DA oo A G =0

(5)

. o s ., M. | 1
where ky +.,.+kn2 =m and B (kl""’an) is /kl'°°° k !

times anv one of the coefficients a(jl’°°°9jm; il"“” im)

of . . ees .. in which k., of the .. are cqgual to
fjl 1 ?3‘ i 1 \§31 :

Aﬁl etc. The relation (5) holds for all A's in ¢ for which a

second polynomial relation Q (3~l,ao., A 2)=# O holds,

n
namely, the relation which expresseg the fact that the deter-
minent of ¥ is different from zerc. It follows, that in the

z
1reeer X, ] we have
n

P (Xl,...,X 2) Q (Xl,...,X 2)
n n

we have (4 [X

polynomial ring £ [X

[l

0. 8ince Q <Xl’°°°’Xn2> £ 0,

1ree X 2] is an integral domain sece e.g. Vun der
n

Waerden algebra I) P(Xl,...,X

ficients B (k k = 0,

1rvees o) =
n

iogeeey ir) = 0. This completes the proof of the
L il

2) = 0 . Therefore all the coef-
n and we have shown that all

a(jl,...j
Lemma.

m?

This Lemma, together with Thecrem % of Chapter II proves the

following result:
Theorem 1

Let G = GL(V) be the gencral linear group on a vactor space V
over a field of chsracteristic zero, and let V ®mbe the space
of m-fold tensors over V. Then V @m is a complotely reducible
G-module, and the irrcducivle G-subnodules are obtained as
follows. Let e be a primitive idempotent in the group algebra

4 5 m; then eV @Dm'is either zerco or an irreducible G--submodule

of V ™ | 411 irrcducible G-submodules of V @ are obtained
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. . - . . .\ N m
in this way. Morszover, two irreducible G-modules eV ® and
e'V X are G-isomoryhic if and only if e¢ § b and e'@ Sm

are isomorphic right /é\/q—ld.@dlu.

Let now § be the complex field @. We show that an irreducible
G-module of Theorem 1 remains irreducible under the action of
the subgroups 8L (n, € ), U(n) and SU (n). This follows
from GL (n, ) D 8L (n, € ) > 8U(n), GL (n, T ) D U (n)
D 8U (n) and the following

Lemma 2:

With the notaticnes of Leuma 1, the algebra C is the enveloping
algebra of the set of transformetion U ®m9 U &€ 38U (n).

Proof

We use the same notations ag in the proof of Lemma 1. In (4)

the restriction det (“%ij) = 1 can be dropped (if det (?ij)zﬂ

then O l/n (\g ) € SU(n) and gince the equation (4) is hormo-
geneous in the fi’ we can drop the factors z_\“l/n ); hence
we assune that U = ( ?’ ) in (4) is unitery. If we change U by
an infinitesimal amount U —> U + dU, 4U = (4 ‘311 we obtain

from (5) )

: d“g . =0 (6)
J%Jij 1J
From (U + au)* (U + du) = 4,
we get (U*dqU)* + U* qU = 0. (7)
If we put au = i U .8U , 8U = fwg 150 (8)
equation (7) shows that &U¥ = SU i.e. 6U is an arbitrary

hermitian matrix. “e rewrite (€) as




D -
T P 0%, =0

oince an arbitrary matrix 6Bij can be written as a sum of a

hermitian and i times another hermitian natrix we conclude

Jp : i € ) . .
.= 0., The maetri . ig non-singular., which
% = 0. the metrix (5 4) gular,

= 0. Yhe left hand side is a homoceneous poly-
ATE
nomial of de¢, ree m - 1. Hence we can repeat the argument to
conclude (by m-fold diffcerentiation) that the coefficients P

in (5) are ecqual to zero. This proves the Lemna.

Remark:
y O

become ecuivalent if we consider them as modules for the sub-

It can hapren that inecuivalent G-submodules eV & m and e

groups SL(n,C), U(n) or SU(n). This will be studied later.

In Chapter I we have determined the primitive idecmpotents e of
6 Sm for which ¢ Sme is a minimel left ideal. In Theorem 1 we
need the »rimitive idenmsotcnts for which e éfﬂm is a minimal

right ideal. In order to find these we look at the mapping

A -1 N -1
a = j{_a(s) > o = Ziva(s ) s = 21»&(8) s
S S
. N
of éfﬁm onto ¢f§m, Obviously a = a and ab :‘%g, In other words

a —> 4 is an involutive anti-isomorvhism. Left ideals are mapped

>

onto right idezls and invereely. If L is a miniral left ideal,
fa) A
then L is a minimal right idezal (show that L «nd L are in the

J

same two-sided ideal). If e is a primitive idenmpotent then the

same 1is true for e and vice versa.

2y s .
Now let be a orimitive idemnotent such that @ Sm e

is a minimal left ideal. according to Thecorem 14 of Chapter I

}“
e R(1
e C(

it has the form

e’

)
)

O o

a4
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and hence
N -1 -1 S
¢ =0 = Z?—qq P =Z5qu?<

This solves eur problem.

2,

0
0
Il
¢

q‘l)' (9)

Next we want to characterize thce primitive idempotents for
. X m ol . .
which eV ™ = 0. ror a fixed Young diagram D, a gencral ele-

ment of ¢(D) V W 55 of the form

Z N i
Ft = €(5) F = ( ;Zi__ E;q qp) F * e, ® r®

m . ) . o
where F & V'g) . It is convenicnt to arrange the indices

1°°""m

il°'°im of F in an index table of the same form as D

. - . - A2 .
with cach number k replaced by i - If D = E:%i! we find for
exanple

.
‘2

F'=e<D>F=vZ (). EP) F7 o @ e
S,

‘a
.

L }

N 4y ' 32 'z 3
- (P L BRT LRy
;4"';3

o
T
N
N
A
@
"
&
)

Proposition:

. s m .
The idempotents e with eV ® = 0 are nrecisely the ones be-

longing to Young diagrams with more than n rows (n = dim V).
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Proof:

. e m .
FPirst we note that by (I,(44)) every tensor I'' in eV’Ga ie
antisymmetric in the columms: ¢q ¢ F = & e F, g &€ C(D).

a
Let now the number r of rows in D be bigger than n = dim V,

il...im ® n
and let F' = (B! “) be a tensor in eV with components

ije..1
S m - . .
B! . Let 1',...,r' be the r numbers in the first co-

lumn of D, Since r n at least two of the i R | in
E 9 9
1! r'

must be equal. If t denotes the transposition of these

F'll. ° elm

two numbers, then according to the above remark t F' = - F' ,

il"°i is...1i
On the other hand t docs not affcet F! m’ hence B! o 0.

This holds for overy component i nlying F' = O,

For r £ n we consider the gpecial teunsor

~ I¢ Lo \
1) ® (92\@ e 6,02) ...
fl f2

where Lfl,...,fr] denotes the lensgth's of the rows of the table.
Since diagrams belonging to the same table give isomorphic sub-

modules it is suffiicient to consider the following spccial dia-

iy

gram D
D:| 1 ]|2]|... fl‘
£+l cee fl+fzi
letc.
P E.jéi P apnlied %o FO gives a number different from zero
p e R(D)

times FO. Q= ZZ gq q applied to FO gives a cum of different
q &« C(D)

terms, and since thc o ® 0 ® ey are lincarly independent,
1 )
e(D) Fy # O proving our vroposition,
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CHAPTER IV: IRREDUCIBLE CIIARACTERS FOR U(n) AND ESm :

1, Irreducible characters for U(n)

In this section we compute the irreducible characters for

U(n). This is possilkle without knowing the representations.

Let 1 be an irreducible U(n)-module over { . We consider the
subgroup D C U(n) consisting of all diagonal transformations
& o -
A:( T )9}E~‘=ls E.:__-el,]
o 4 J J
h

This group is isomorphic to U(1l) x U(1l) x... x U(1) (n tiwes).
Bach element of U(n) is conjugate to an element from D, A per-
mutation of the £. in A leads also to a conjugate element.
Let K be the character of I, dince X is a class function, it
is sufficient to know X «n D. K( 21},0,
function on U(1l) x ... X U(1l). M considered as a U(1)X ... xU(1)

, E;m) is a symmetric

module is completely reducible with one-dimensional irreducible
components, Let vy,k =1,...,dim M, be a basis of M, which
adapts this decomposition. Then A v, = fk(al,,,.,an) v, & € D.

The representation property implies
fk(a1’°’°’an) fk(Bl,...,Bn) = fk(al+81,,..,an+6n)

Clearly | fkj = 1 , hence fk is a primitive character of
U(1) X ... xU(1). We assume that the representation of U(n) is

continuous. Then fk is & cantinuous character. Now we use the

following

Lemma 1:

Let Al’ ooy An be (topological) abelian groups, then every
primitive character of A = Alx oo x.An is of the form

(Xl,...,Xn)—'—‘> Xl(xl) Xn (Xn), X, € Ay
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where the :Xi are primitive characters of the Ai.

Proof:

If in is a primitive character of Ai’ i=1,... n, then ob~
viously X= :{l oo }:n is a primitive character of A. Con-
versely, let Xbe a primitive character of A. If e is the

identity element of Ai then

)((xl, Koy oeey x,) = }:(Xl, €y ey en) 3((el,x2,e3,.,.,en).,.

oo X (el"°"en«l’ Xn>

If we put ><j (Xj) = /K(el,,.o,ej"l, Xj’ © 417
}Cj is a primitive character of 4, and X=X

proves the Lemma.

cees en) then

1o )(n. This

The continuous characters of U(1l) are
X (a) = N , h & integers.

Hence T (al,.,., an) is of the form

k

i S h‘(k)ccm \ hik) p ()
f (Cﬁ ’nln,a ) = € & = E" e o o E‘ —=- f
k71 n 1

2
o
(
l._.l
o
Sv

From

X (Eqyeees €)= 2 £ (Eqyenny &)

we conclude that X ( El,..., En) is a symmetric polynomial in

the Ej with positiv integer coefficients.

Next we need the Haar measure for U(n). Let £ be a class func-
tion on U(n) and dg the Haar measure of U(n); then (for a proof

see H.Weyl: "The Theory of Groups and Quantum Mechanics",

Dover publications, pare 386):

5 £ :Cj—dnon WAy

U(n)

2 p (Gyreens @) (1)
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where
grt et £ 4
€7 e, " £,
A= (T(E-¢)- : =17 e (@
el Lk . . .
S

We assume that the Haar measure is normalized, hence c is fixed

by the equation

c ( |A | 2 dojeee day = 1.

H
~

The expansion of the determinant & gives

il (n-1) a.+(n=2)c +...+c  -4+0.u_ ]
D = :E: & T e 1 e n~-1 o

i
ned
n
where 1 permutes o.;..., a_ . Now let p be an antisymmetric
1 n hl°'°hn
polynomial of the form
N j'ZLhkak
Py o T 21 En T e y h1'> ]ﬂ.2 > ...‘7hh,hi & integers.
1 n
Then

: /
Cn! (2m)® for h = h ,k=1,...,n
_ (3)
Y (@) =
n

at o o (a)
Py b Pyp 0 otherwise

4
l looo

Especially we obtain c¢ = [n! (Zn)n]—l. Since XNis irreducible,

we nmust have

USRS

[n! (2n)n]—lh5 e AX Z)); =1, defined in (2). (4)

et [ = A - X (5)
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7 is an antisyamnctric polynomial in the Ej with integer

coefficients, hence of the form

. n & integers.
(n) 1 n 1" 1°"""mn

From (3) (4) we obtain

Z "“121:1 =1

hence for some integers hl > h2'> I hn
1
D=+ p (6)
1 n

We now exclude the (=) sign in (6). For this, we consider the
coefficient of the "highest" term on both sides of (6) in the
sence of following orderings

Ky koK K ( ,
E 7 E T e T £ T (kppeeepky) > (g,eede)

7/

l’ot.ykn) >(kl’oo
left, the first ki different from k'i is bigger than k'i.

h h
The right hand side in (6) has highest term + E;l l... é’n no
The highest term coming from 4 in the left hand side of (6)
n-1 n-2 o]

is E’l Ep o en & 0’ and X has only positive integer coef-

ficients., This shows that the (-) sign in (6) is excluded.

/
and where (k .,kn) if, by reading from the

We arrive at the result that a priunitive character has neces-
sarily the form

-1 .
h ( 819""7 8 ):A P h (él"”76 )

10y n nl... n ?
h - h 7
| e™ et D
= ; hl:> h2'> ceo 7 hn’ hi € integers |
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Applications of the Character ormula:

We have shown thot the Tunections of the form (7) are orthonormal
with respect to the Haar mensure (see egquation (3)). From the
Peter-Weyl theory one lmmows that the prinitive characters of a
compact group from a complete orthonormal set for the class
functions on the group. This fact implies that 211 functions

of the form (7) are primitive characters of U(n). We will ob-
tain this result below without using the Peter-Weyl theory.
First we compute the character of a representation of U(n) cor-

responding to the Young table D=|[F fn]. Je know that

this chericter his nocosearily the Torm (7).
. , 0 f
It is clear that e(D)VQD , T = f1+'°°+ fn is spanned by vectors

e(D) e. ® ... ®e. which contain at most f. identical fac-—
i i i
1 f

tors €. otherwise the application of Q = f; ¢ g glives

z C
q & C(D)

zero. On the other hand we have seen that e(D) Xq # O for

XO=(61®'°°®61) X (82\:9.”@82)®

y T2
Clearly
f f £ 3
®f c 1 n . ! . QG
A G(D) XO —_ (_.l e o o g‘],l e(D> XO 9 A - ( O . Ew)'

Henc% the highest term in the character 7< of [fl,...,
T

fn] is
E:l l... En_nn This imples that the highest term of AX is

fo4n-1 f 4+n-2 il
< 71 2 n
< . .
1 52 “‘Ewl and thus
p— — - - 1 -— 2 i = °
hy=f, +n-1, h,=17,+n , ho=1f (8)
Completeness:

In (7) the hi are not restricted to have fn > 0 (the fi are now
always given by (8). If we, however, multiply the tensor re-

presentation [f fn] by (det A)—k, L & U(n), k positive

lycoo,
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integer, thc representation so obtained is of course otill
irreducible and has a character of the from (7) where the

. - ' 5 o . . . .
h'i are given by hi = hi - ko we gee that we obtain in this

way all continuous irreducible representations of U(n).

The same argument shows that if L —— [f

tensor representation of U(n) then

l""’fn] is a

A——=> (det A)fn [fl SIE SRS P SR 0] gives the same re-
presentation, Hence the tensor representations [fl,...fn_l]

are the complete system of continuous representations of SU(n).
Two different Young tables with fn = 0 give inequivalent re-
presentations for SU(n). This can easily be seen from the cha-

racter formula (7) (note that 81} sooy L are independent

n-1
variables).

Dimensgsion PFormuls:

The dimension of the representation belonging to the character

;K‘h is equal to jch " (1). If we take formula (7)
n

Y h
l..b n l.'.
then 7;(11) is of the form o/o. For this reason we adopt the
following limiting procedure. We put 6y = (n-1) «, a, = (n-2),
ceey 0 =0 a and let —> 0. For a —> O
hla h2a
e - e Y o (hl - h2) , hence for « —> O
hl hn ——
e, e 2 (I ;m-n)o
i<k
| e™h o, e, 12 1) k-1«
i<k
and the ratio of the difference nroducts in (7) becomes
Ry (hi"hk) A (hoyoooh)
i<k » 1 n
N[h ® o 9 h ] - T --‘(_‘k—‘.-‘-‘:.}'-—“u"- = / i ) ( 9)
1’ *“n {(k -1 A (n=1,,...1,0)
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For SU(3) we get for the representations [hl, h,, 0]

(1,-1,) (3, -0) (1,,-0)
Nln,n,,01 = (22D (2-07(1-0)

1 )
= 5 (hy-h,) hyh, (10)
The complete system of irreducible representations of SU(2)
is given by [f,0]. This shows that 211 spaces of irreducible

representations are already spanned by symmetric tensors.

Tet us return for & moment to the full linear group GL(n, d).
The tensor representation belonging to [fl,...,fn] = [l,o,,yl]
is obviously the representation A —> (det A). The repre-
sentation A —=—3 (det A)k, k positive integer, is the k-fold
tensor oroduct of the representation A —>  det 4 wnd hence
must belong to the tensor representations. To which Young tob-
le does it belong ? Since polynomial degree is k, we must

have fl + . + fn - k.n. From the dimension formula (9), which
obviously holds also for the tensor representations of GL(n, @),
it is clear, that the only one dimensional representation with

this property is fl = f2 = eee = fn = k.

Furthermore the representation A —>  (det A)k [ﬁf..,,fn] is
2+k,...,fn+k]

since this is true for the unitary subgroup U(n). Hence for

irreducible and belongs to the Young table [fl+k,f

SL(n, ) we can restrict ourselves to Young tables with f = O.
Two different Young tables with fn = 0 give ineguivalent
irreducible representaticns for 5L(n, ) since this is the

case for the subgroup SU(n).

We add a further remark. Sometimes it is useful (especially for
*
5U(3)) to consider the following representations. Let V be an

n-dimensional vector space with the following action of U(n)

A€ U(n): fi S aik §’k , (aik) = A ,
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. ) . *®T . . .

and coneider the U(n)-module Vig . It is obvious from our earlier
-X®T

result that the set ACQ

* * F
¢ = HO%S (T®T v DTy | Hence the U(n)-submodules are identical
7S¢

with the C-submodules and all irreducible U(n)-submodules are of

, A € U(n), generates the centralizer

the form B
5 o

e

’ (11)

e a primitive idempotent. If e belongs to the Young table

[£y,...
To which character does this representution belong ? Using the

*
, fn] we denote the represcntation (11) by [fl,.,.,fn] ]

same arguments as zbove, it is ckar that the tensor

x = (6® ... 06) @ (L, ... 06,) ®...

N
iy

n n-1

where e, is o basis of V picks up the highest termn, namely

1
- T - T - T ~-f ~f -1
n n-1 1 n ¢ n-1 1
& £, En ™ = 51 > By

- *
From this it is obvious that the representation Lfl,...,fn} is

isomorphic to the representation

-T

A—>  (det &) l[fl—fn,f - f

l ]{1-—]_ 9 e o o ] O]

If we restrict ourselves to SU(n), we conclude that the repre-

. *
sentation [f f ., T

lyolny n_l]

(Draw a picture of this relation).

is equivalent to [fl, f. -f

"‘f .
1 "n-1’"" 172

Bxamples for SU(3):

2 %
IO I i B o
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Without proof, we give now the construction of all irreducible
(always finite-dimengional) representations of SL(n, €). Let V
be an n-dimengional vector space with vectors ?a and conegider

the "fundamental" representation of SL(n, C):

Ac 5L(n,q) : '§a——$ Eﬁafs , b= (agg).

Beside V consider a second n-dimensional vector space V with

vectors 2(; and the following action of SL(n,d):
A €5Un, @) i P, = Cab 75 0 B=(ag)

Then the following theorem is true: (i.e. Boerner page 159)

Theorem 1:

The SL(n, ) submodules

®m C oy @

e V & e (12)

where e and e' arec priritive idempotents of QQS and 9 he-—
L X m ml

longing to Young tables [fl’°°"fn—l] and [f"""f£m1] are

irreducible. One gets in this way all irreducible continuous
SL(n,Q ) representations. loreover, two modules (1l2) are iso-
morphic if and only if their corresponding pair of Young tables

(with £ = f!' = 0) are the same.
n n

Remark:
If we restrict the representation (12) to SU(n) then it is the

tensor product representation

*
1 1
[£,00008, 11 @ [£7,...,5) 5]

— ey t_et 1 Pt
= [fl,..,,fn_l] ® [Ll, £1=f) Jyeees £1-T05 ].
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a5

2. Relation between the Characters of Uln) a o

[
—

The correspondence existing between the represen-
tations of Srland U(n), sugrests, that we can find an ex-
pression for the charscters of Eim in terms cof those of U(n).
In the following we shall exhibit“such a relation and give
a forimla for the dimension of an irreducible Esm - represen-

tation.

Let V be a  n-dimensional vector space over @€ and let

M = V‘ébn% If we define the action of U(n) rsp. ES on M as

in ITII.(1) rep. LII.(2), then M becomes a U(n) x 5 —Amodule.
Let m & fsyq,fk & U(n). We now calculete Tr(ma), mA consi-

dered as an operctor in i, in two different ways.

a) ¢ bogin with a decomposition of 14 into irreducible U(n) X Sh;
modules
C D, ety iy, @)

)

(v

here the sum runs over all Young tables. As shown in the

.
Aoppendix to chapter II, M(r) is iscmorphic to a tensorproduct
()

w( ) )
e My i

respectlvely, If we denote the corresponding characters of Esm
with 9C(r) and of U(n) with () e get

Tr (nh) = ZE; X (ig XEX% . (14)

(r)

where Mg are irreducible U(n),.Sym—modules

-
b) Let 7 e, ,i=1,...;, n } be a basis for V such that
Ae, = ELi e, The charactcer is a cless function and it is
therefore enough to considcr

C..“ o \
A = T . we find at once

c <, /
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(15)

The Matriz mA with respect to the basis e. ® ... ® e has

i i
1 m
diagonal elemcnts 1f and only if
i 1 = i, for all j. (16)
T 7. J
(3)
. I .
We now determinc the subspace of V ® m with thc property that
i =i, , Let (X ¥ o ...) be the cycle decomposition
-1 J 1 o
T,
(3)
of m. ¥ 1 periutes certain factors io ¢ ® - ® ¢y i.e.
m
the vositions Gy oeey c-..X , «nd sinsilerly for the other cycles.
: . . . Al o -
Only if 1 =1 = ..., = % , can (16) be satizsfied. Let
¢ C Gy G
1 2 X -
4
M be the subspace gencrated by the elewonts
K L > w
1

{ep(al) ® ep(cc2) e & c (ocy ) 5 p=1l,...,0 } .

In this subspace ( 5(1) acts "diagonal™. If we repeat this con-
I X 2
struction with the othcr cycles and note that nA acts "diagonal"

cxactly in I X ® M, ® ... we finally gotb
1

n
tr(na) = || or (8) {MX- = (Z €. )
3 93 ; k=1
‘ — (17)
=HTr<Ax3> = HG”’J.
J J

A comparison of the two results for Tr(mA) leads to
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" (x) ), I
jii_, X () T Elseeey £) = \k 03 (18)
(r) 3

Note that the right hand side of (18) is a polynomial in the
£ ..., & a° We have thus found a relation between the characters

1
of Sm and U(n). With the help of the orthogonality relations

r . C
for the characters X( ) we could in principle extract an expres—
. ~ T . Q , .
csion for the characters )Q( ) of Jw}, We ohall not do this but
1

derive instead a
Dimensicn Tormule for the revrcsentations of \Sr:
il

The character X(r)( £

) of U(n) is given by (7) and

o
>
“

1°°° n
(8), so that

N (r) Nrﬂ P
Vi ps P = AN b . (19)
— (n)  “hq., d j
(r) j
and x(ﬂ ig equal to the coefficient of € hl Ehn in
. (TC) o A Wco i U o (2 l o e o n
2\ - H O/j . In geniral
! )
dimension g = X (f»ﬂ ) (20)
If we get 1 =4, then Xl: XZZ'“Z Xm:land
— - oo n__
e - _(y & )"
| oL ) = (e N
j j k=1 k=1
The risht hand side in (19) then becomes
n
Z ¢ \m Z - n-1 n-2 o]
( k) : (-1)" = ( €, £, .. E:n) (21)
k=1 T
hl . hn
and we have to find the coefficient of 5‘1 oo & in this

expression, Now

L - k k
1
(Y gr. 2 ooml__ Mgk

k:l :1’ . '}IV“ kla e o ul".‘no l n
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and

n-1 n-2 0 f f

i (83_

so that to get the desired term
k. =h, -1, (22)
i i i
This yields with © (n-1, D2, ..., 0) = (fl,...,fn)

g = m! Z (-1)" .

(hl—fl)l e (hn—fn)l

T
l . l e o o » l
1
[0, - (0-1)]1 By - (n-2)]! Py
- 1 e e ¢
=m! - | [b, - (2-1)] :
1 1
[b, - (n-1) ]! h !
hy(hy=1)...(hy-(n-2)), coo3hy(hy-1)5 by 1
h2;
m, . .
! ] .
hyleo.h ! : .
) hn; 1

The elements in a fixed row are always polynomials with degree
descending from left to right. It is thus possible (by addition

of multiples of columns) to arrive at the form
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n-1 2
e A T
m!
g - 1 1
hl. . hn.
-1 h° n 1
n n n

which is again a Van der Monde determinant and the final result

for the dimension g reads

(23)

g does not depend on the parameter n. It is in general enough
to chose for n the number of rows in the Young table of the
representation, But n 2 2 is a necessary condition for the

validity of the foregoing calculations.

Example: S 55 T = [rl, r2] = [2, 1]

r: |

Chose n = 2. Then

]

hy
n

ry + (n-1) = 3

+ (n-2)

[l
=

2 T

and g Dbecomes

_ Je 2 0 _
82,11 = 3t ar = ° :
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CHAPTER V PHYSICAL sPPLICATIONS

In this chapter we illustrate the usefulness of the group
theoretical results developed in the previous chapters for the
solution of a variety of physical problems. .e start with a

discussion of the (L,S)-terms of a complicated atom.

1. (L,S) - terms for an Atom

Let us consider an atom with f electrons. We would like to

classify the eigenstates of the Hamiltonian

L 2 £ 2 2
_ L Z pec AR § le g e
H= 2 m Py £ T + r. (1)

i=1 i=1

that is, we consider the case where the spin-orbit coupling is
small and neglect it in a first approximation., The Hilbert space

of f electrons is the antisymmetric part of

;p\z (5 ® (g ©f

and tne symmetry group is 0(3) x S "he subspace belonging to

f.
an energy E is the antisymmetric part of

n® (€% ®F | uwc R (R (2)

where M is an irreducible 0(3) XZ\S - module if the energy is

f
not accidentally degenerate.

Propositions

M has a definite parity.

Proof:

The parity P: ¥ —> - % commutes with all rotations and
the elements {dL, P} form an abelian, cyclic, invariant sub-
group of 0(3); 0(3) ¥ g0(3) x { 4 , P} . Then according to

the reasoning on .59 we can reduce M into a direct sum of blocks

£



such that the rows in each block transform irreducibly under
S0(3) x bf whereas the columns transform irreducibly under
{ a -, Pﬁ . M is irieducible and therefore only one block

(consisting of one row) can occur.

Wwe conclude that M is also an irreducible ©0(3) x (Sf -~ module.

Hence we can introduce a basis in M (see appendix to Chapter II)

L L L
¢ ¢ e e 9
-1,1 -(L-1),1 L,1
M=M(Aa,L); ' (3)
L L
o) T
-—L,l" L,I’

gsuch that the rows transform all in the same way according to
the reprecentation D(L) of S0(%) end such that the columns trans-

form irreducibly and in the same way according to a represen-

tation A of Sf.

In focussing our attention to the module (012) ®r

, we first
remark that we can choos. the parity onerator equal to 4L az
long as we consider only one sort of particles (according to
ochur's Lemma, the parity operator in Qﬁ2 is ¢+ 4L, an overall

phase of the parity operator is, however, arbitrary). The re-

duction of (Qf2)(3 T yith respect to SU(2) x Sf gives
YN
por. D
(@) = S N(Aar,s) (4)
Ay, S

In N(&A',3) we introduce a basis similar to the one in (3).



N (Aa',3):

Remarks:

1.) The Young table c

two rows since the rows in (5) span a representation cof SU(2).

2.)
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U U —> D
-8,1 . 4,1
‘ : (5)
S s (5)
U I — 5 3
-5, S,t
\ J
/ )
4L A

orresponding to A' cannot have more than

A' is uniquely determined by S. By construction, we have

collected in a block all isomorphic SU(2) - modules and all

IS

isomornhic U o

Now we form

. ®f
M(A,L) ® (C°)

and look for the anti
chapter we show that
tained in O & A
A" belongs to the Y

nodules,

”]
=

Ci
]

M(A,L) & N( A 'L,Y)

symnetric part. In the sprendix to this
the antisymmetric reprecentation is con-
if and only if and then exactly once if

oung table which is obtained from the one

corresponding to 4 by interchanging rows and columns. We shall

call this representat
~

denote it by 4 .

The considerations so

ion the asenciated representation of & and

far show that an encrgy eigenvalue E has

a definite parity, a definite 1L and a definite S (if we ignore

accidental degeneracy

). The symmetry character ef the space

function is uniquely determined by the spin S. Its Young table

cannot have more than

Pauli-principle.

two columns. This is the effect of the



Clearly the elements

& (L,5) L
) = 1 L S
i - 2 U 6
my g 3 Pope @ gk e
k=1
r:dim&,-—Lg‘mLsL,-—ngogs
[}

transform under = é—fo (see Appendix) according to (using
the uniterity of A )

— L AN (Y S
T 1 > T ®E O (m) v° |
My, Mg > — Z_ < %‘iﬂ( ) CPmL,k' Toykn mg"“”
11' k k' ~ 1
(1,9)
- & ’
- & D
g0y
so that (6) gives a basis of the antisymmetric part in
M(&,L) @ N A,8).
In order tc obtain the manifold of (L,5) - terms of a complicated
aton one starts with a Hamiltonian
f 5 _
U A N > _—
ho T 2m L P 7 a v \ri)
i=1 i

where V(r) is a screcned Coulomb-potential which takes into
account the attraction of the nucleus and the averaged repulsion
of the electrons (centrsl field approximation). By switching on
the full interaction continuously, the manifold of (L,S) -~ terms
is not changed. In section 6 of thie following chapter we show
that separate shells can be treated independently (the Pauli
princinle is not "effective" between different shells). Thus,
there remains the tacgk of determining the (L,S) - terms of f
electrons in a given shell., we now apply our group theoretical
tools to solve this problem. (Yhis problem can be solved with

more elementary methods; the amount of labour increases rapidly,
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however, if the number of =zquivalent electrons increases; see

e.g. Van der Waerden: oie Grurientheoretischen lethoden in der

Quantenmechunik. )

Let us counsider & shell with bagis @i. Let V be the space spanned
o

by the @L , — ¢ £ m & ¢ . In oraer to determine the (L,3)-

terms of f electrons in this shell, we have to reduce V with

respect to S0(3) x fo,

allowed which belong to Young tables with not more than two co-

whereby only representations of ng are

lumns (Pavli principle). Since $0(3) commutes with Sf, the

group S0(3) operates by a subgroup of the centralizer

C = Honm (Vv ® v ® 1 ) .

4

c S

f
From III. Lemma 2, we know that C is generated by s5U(2€ + 1).
We imagine that we have decomposed V ® 1 into blockg of irre-

ducible ( S C) - modules. These modules belong to a Young

fS
~J
table R. The spin ic given by the asgociated teble R and the

possible L values are given by reducing the irreducible tensor

representation of SU(2¢ + 1) with respect to 30(3). Th- ~mbedw=
ding S0(3) C 8U(2¢ + 1) is such that the basis vectors @g trans-
form under S0(3) according to

S0(3) 2

mm'

m’
N i
Note that the Matrix (Dmm,) ig an clement of SU(2€ + 1).

Before discussing the branching sU(2€ + 1) 2D S0(3) more

systematically, we work out a simple

fixample: % p electrons.

For p electrons ¢ = 1. The only allowed tables R are

R
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nJ
The corresponding R are

Yoo, HH

whose dimensiongas irreducible SU(2) reprereantations are

(by IV.(9)) 4 and 2 respectively, lesding to sryin values S = 3/2
and L = 1'/2. Now we hive to coupute the branching SU(3) 2 S0(3)
for the tables R. Since E} hag dimension 1 it contains only

L = 0. The table Ea has ahly L = 1 since the diiension of the
corresponding LU(3) representation is 3. 0 contains obviously

only L = 1. Now (see appendix to this chapter)

i

He o - H e 17 ()

i pe—

Restricting (8) to the subgroup S0(3) < SU(3), we obtain for
the left hand side

D g D L (D g (1) g 0)
L =2 L =1 L =20

which shows that the L-values of Lm_] are L = 2,1,

With the notation

28+1y 1 0 5 3 4 )
A X | S DI|F Il g

we find the following (iL,3) - terms of three equivalent p

electrons:

s, 2p, 2y,
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Decomposition of Repre.cntations of SU(n) into Repregentations
of 50(3)z

We describe first o general method ror the reduction
SU(2¢+1) D £0(3).

Let X (& £_+€ ) be the character of an irreducible

gt
representation of SU(2¢ +1). If we restrict this representation
to the subgroup SO0(3) we obtain a representation with character
e o(2a1) e L
(see (TNY (8) = X (& € ... € ) Here &£=¢"%;

7

¢ = rotation angle cround z-axis.
(1)

Let K (&) be a nrimitive character of 30(3). It has the form

L I+l -L

(L) < £ - €
K (g) = L e = . (9)

M=—1

The expansion of Y( £ ) into primitive characters is given by

(L)
(e) = Z ar K (&) (10)

L

where a; is the multiplicity of L in Y( £ ) (see next chapter for

some general results on characters).

If we expand Y( &) as

¥Ee) = z b, &7

n

and compare with (10) then

a. = b. =D (= b

N il -L -(L+l> ) (ll>




We apply this method first to thc representation [T ] .
Evaluation of IV.(7) for | I [ showg that

X (€ yeees €5p49) = Z EiEj (12)

1<§j
and hence e
m m
T(E) = > ¢ e 2, (13)
~ggmy < m, € 8

From this, one eagpily finds the L-content:

14y = n=2e,2¢~-2,...,0 (14).
!
TFor the antisvametric rerresgentation Lﬂ the character is
X = \> €. §&. and from this, one finds the L-content:
<L i J
1]
B : L=2€-1,2¢ -3, ..., 1. (15)

More generally, the character X for the representation belonging
to

BN

b —_—
- 16 X ( gl’ b En> = ci ei LA 4 E (16)
. 1 2 r

|| 1l< 1,¢ oo < 1.

and the highest L value for S0(3) beconmes

L =04 (1) 4o+ (Coprl) = pe o EE=L (g
max >

with multiplicity 1. General formulas are complicated, but in

simple exampnles tie L-content can easily be computed. The di-

mension of the representction (16) is



dim

(2Q4&.)
= X (4) = r (18)

This is sometimes useful.

Example: Three d electrons

The Pauli principle allows only tables with at most two columns

. , |
R, : . R, :

~
R
and R2 are characterized by S = °/2 and S = ~/2 resp.. We have
to study the branching SU(5) D S8C(3). The highest value of L

for Rl is Lmax = 5. dince the dimension is 10 and L = O obviously
does not occur (aO = bo - bl = o) the only other value is L = 1.

In the Appendix we show that

The irreducible representations of SU(2) corresponding to

B®D = ® (19)

-

ain[{ = 10 and with (15) L= 3,1. dim [1=5and L = 2.
Reduction on the left hand side of (19) gives (if we write L
instead of D(L)) 5@ 4 ® (3)2 @ (2)2® (l)2 and we obtain
for |

2
L=5, 4', 39 (2) .

A op
Hence the (L,S) - terms of three d electrons are

e

o 2.2 2. 2
P, (°p)°, °p, %, %m, *p, 4r .

To show how fast the method works, we consider also the fol-

lowing
Example: Four d electrons

The allowed Young tables are

. . ] T
Ry , R2.v , Iy }_
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so that the spin is found to be 8 = 2, 3 =1, 8§ = 0 resp..We
first consider Rl' Since Ffor 3U(5) E is the contragredient
representation of [J the L content is L = 2. From

ﬁj ® [ = ) N

and the already known L-content of Eﬂ we get for

|
- 4 L = 59 49 (3)2’ 29 (l

(T T

)2

.

Using

L_‘@D—H@Dj

we obtain for

t

: L=6, (4)°, 3, (2)%, (0)°

and hence the (L,8) - terms of four d electrons are

2 2 2 2 2
sy, toy, v, ey, 1, ), P, P, e, ’m, °n.

BExercise: Determine the terms for five 4 electrons,
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2. Nuclear Spectra in (L,S) - coupling.

Supermultiplets

If the nuclear forces do not depend strongly on the spins, we
have essentially the same nroblem as before - the only difference
is that the spin-space has to be replaced by the spin ® iso-
spin-space Gl4. The Hilbert space of f nucleons is the anti-
symmetric part of

®
Y2 (R’ © (¢h (20)

The energy of a gtate will depend critically on the crbital
wave function. Lince the nuclear forces are primarily attractive,
the energy will be lowered if the symmetry of the orbital wave
function is increased. Thus, we may expect that the state whose
orbital function has the highest symmetry will have the lowest
energy. Since the energy depends only on the orbital function,
while the multiplicity depends on the charge-spin function,
each energy level will be a supermultiplet. Let us first look
at the isospin-spin content of a supermultiplet. Ve begin with
[0 (self-representation of SU(4)). If the elements

{ a; 5 1=1, 2 } form a basis of d:z , so do the

{ oy & a, 3 i,j = 1,2 3 of Gl4. SU(2) X SU(2) is canonically
embedded in SU(4) according to

SU(2) X SU(2) 2 (Ul’ U2) Pay @ a‘j ——d Uloci®U20cj
and we obtain

|‘:_| : (2I+1,28+1) =(2,2)

Frrom [ ®[] = [[] @® Fq and dim E} = 6 (see(18))

it follows dim [:[] = 10. Reduction of the left hand side gives

(292) ® (2,2) = (3,3) @ (lsl) @ (391) @ (155)
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and by looking at the dirensions we get the result

T = (3,5 @& (1,1)

Ej . (3,1) @ (1,3)

By IV.(11l)ff the representation !g has the same SU(2) x 8SU(2)
content as [ , that is (2,2). From

B®D= [@l

we obtain

] : (2,2) @ (2,4) ® (4,2)

Using this result and

(1 & O

we find

LTT] : (2,2) @ (4,4).

This ladder process can bhe continued. The computation of the

1"

LIL] &

L values in a shell model proceeds in the same way as for the
atomic shell model. Here we get in general more terms since

more than two columns are allowed in the Young tables.
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Quark Model

In the quark model the mesons are considered as bound states of
a quark and an antiguark, whereas the baryons are considered to
be bound states of three quarks. Furthermore, one assumes that
the g-q forces are independent of the spin and unitary spin.
Formally the difference between the quark model and the super-
multiplet model for nuclel which we considered before is that
we have to replace G:4 by (E6,

Let us consider the nossible thrce quark states in the spin-

7~
unitary spin space €. We have to reduce 1 ® [ & [ into
irreducible SU(€) renresentations and determine their SU(3) X SU(2)

content. The method is the same as before.

For the self-represent.tion I of SU(6) we have at once
1 ¢ (aim 8U(3), dim SU(2) ) = (3,2)

From
OO - He o
we conclude with (18) that dim H = 15 and dim [1J = 21.
Then

(O,s5="2)® (O, 5= =(0Oe0 ,/2&/9 =

=(He ,1@ @) =(0x& I, 1 ® (0)) where O

etc always denotes a SU(3) representation. Thus we obtain

(392) ® (3,2) = (3* b 6 5 5 EB l)
= (3%,3) @ (3%,1) @ (6,3) @ (6,1)
and

(] ;o (6,3) ® (3*,1)



Next we consider

[ 1

Y = [ 111 & [ (see IV.(9))
21 ® 6 56  ® 70
Heao - e
15 & 6 = 20 @ 70

On the other hand

[(6, 3) & (3*%,1)] & (3,2)
= (10,4) @ (10,2) @ (8,4) & 2(8,2) & (1,2)
and

[(6,1) & (3%,3)] ® (3,2)

= (1092) ‘(B (874) @ 2(892) @ (194) @ (1,2)
Wwe find, by looking at the dimensions, that the only possibility
is

(10,4) @& (5,2)

It

s 20

(8,2) & (1,4) (21) |

I

i

CI1 T :« 56
|
—

70 = (10,2) @ (3,4) @ (8,2) @ (1,2)

We also note the result
6 6 Q 6 = 56 @ 2(70) @ 20 .

For 2 more gystematic solution of this reduction which makes use

of the characters of SU(n) see Macfarlance J.M.P., 1965.




Particle Agsignment:

By the same reason as in the last paragraph one would assume
that the lowest bound stote of three quarks has a totally sym-
metric space wave function, i.e. all quarks are in relative
s~states. I the quarks satisfy the Fermi-Dirac statistics,
the spin-unitary spin wave function should then be totally

antisymmetric, i.e.

H : 20 = (8,2) @ (1,4)
+

+
. ) . . 1 .
Since L = O in this case, we have a /2  octet and a 3/2 singlet.

This solution was »roposed by Sakita, but had to bc 2abandoned soon.

An at%tractive idea is to consider the representation 56 with
L = 0 for the lowest baryon states. In this case we get a

- +
1/2 t octet and a 2/ decunvlet [(21)]:

N + 0 <~ 0 - ___ ©
1/2 octet: n,n, 2§ R 21 A VAN —_, =
- ¥ *
3 N decuplet: SL y — 3 0 VA
/2 1
1 2 3 4

The spece function in this case must be antisymmetric and we have
to assume that the particles in p-stotes will have =z larger

binding energy than in s-stotes. How is this possible ?




APPENDIX TO CHAPTHR V

In this appendix we derive a few results already used in
Chapter V.

1. Agssociated Hepregentation

Let G be a finite group of order h and let M and M' be two
irreducible G-moduleg with character X ond X' respectively.

Consider the decomposition

Byt = T |
MR N = @ m, N,

into irreducible modules Ni with characters 31. and multipli-

citics I, . The multiplicities m, are given by

U

n, =z Z K. (&) Kie) K(e) (22)

5€C

The antisymmetric reprecentation of ESf ig defined by
S P 20T ———ee) 8%: . It is one dimensional, with

character ?K(”> = &  generating idempotent e =
- 2 P

L ZE; and Young table
\‘ !

f

(=)

I H

Now we specialize G = fo, The wultiplicity m(“) of the anti-

symmetric representation ig then

Lo ) e K K, (23)
ne S

T
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Definitions:

The asgsociated representotion of a given representation 4 of

C . o . ) . .

O op 18 defined to be Eﬂ times the complex conjugate matrix 2N\
S, @ ©n ——> £_A.

Formula (22) shows that

1 if KR! is the associated charscter of ‘X
(-)

m = .
0O cthervise

We would like to determine the Youwng table of the associlated

reprecentetion., Let the oripinal representetion be isomorphic
('\.

to the minimal left ideal L = Ae, A = GZ:)f and e::ji‘e(s) S

a orimitive idemnotent corresponding to the Young table D.

First we compute the character corresponding to e. Consider

the projection

x —> gx e g € Sf., X € A (24)

of A on L. Within L this is just the left-multipiication by g.
On choosiny a coordinate system in A in such a way that the
first m = dim L vectors snan the subspace L, the last (f!-m)
rows of the matrix corresponding to (24) consist only of zeros;
hence the trace of the projection (24) of the total space A is

equal to the character X(g) beldnging to e. e rewrite (24) as

X = :E; x(g) § ——> ZEZ’ x(s) e(t) g s t

8 5,t

-1 -1
g r) r.

= x(s) e (s
s,T

In components the transformation is thus

x(g) —>  y(r) = ;Z,_ e(t—lg“lr) x(t)
"



K(z) = Z e (s 1a) : (25)

The element e has the form
e —

€ pa

L+ a

@
il

q € C(D)

end from thig we see that X (g) iz real.

n
Now we congider the idcmpotent which belongs to the dizgram D

arising from D by interchangzing rows and columns

g: Z E aqrp Z & q_l p_-l = Z Ep (PQ)nl .

P 1Y

I

~J ~J
Hence if we put e = E e(s) & we obtain

’g(s) = 50 e(s'l) , E =& €

S S v
I~y

The character AN belonging to

NI —— ~ S‘
-1 -1 -1
X (g) = Z e (t 7g7t) = 4 e(t“lg—lt) e (t77g t)
t t
- ‘ —
- E Eoeten) = & K™t |
t
Y~
mi. \ e -1 O . :) ; />< :
The elements g and g are conjugate in - and since is a
class-function we finally obtain
/\/ ~~
X () = thX(m = Cgv\(g)n

NS
This »proves that ')((g) Lo the charccter of the ascociated re-

presentation and hence this representation belongs to the
~J
Young table D.
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2. Reduction of the Tengor Yroduct of $U(n) - modules
We gzive now without proof a recipe Lfor the reduction of
a tensor product of two irreducible =U(n) reprecentations

into a direct sum of irreducible representations. The

student interested in the proof should read chapter VI

and then see e.g. obinson "representation theory of th
syimmetric group™,
we begin with
Definition 63

. . PR SRR .
A lottice permutztion of a b ... 18 a sequence of the n a'’
mb's, p c's, ... like aszubba~ ... such that to the left of
any point in the ssequence fthere are wet less a's than b's,
and not less b's tharn c¢'s, and so on,
Now for the recige: Yo find the irrveducible renrsesentations
in the teunsor product, draw tie Young table lor one of the

P Y

factors thet enter in the product. In the table of the o
factor, essign the scre symbol, say a, to all boxes in Uk
first row, the same b to all boxes in the second row, e

Now attach boxes iabeled by the symbol a to the

in all voscible ways subject to the rule thiat no two a's
in the same column and that the resultant graph is still
Young table; repezt this vrocess with the b's, etc. One

-

restriction. If, after =il symbols have been

we read the added symbols from the right to the Jeft in

first row, then in the second row, etc., they nust form

lattice permutation of the a's, b's, ... .

_t
first tab

1

le
appear

o

<

further

added to the table,

the

a




we rewrite tnis as

. . a a

Y
. b

end enlar;e the first pattern

. . a a .

(1)

From (i) we <ot

(note that

)
-

[u]
o]
-
]
-
;

not a 1

t

AV}

{

)

ct

o

ice

permutation).

for SU(3)



FProm (1)

Hence we get the 3U(3) -

&

result:

unit re-rezentation.
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CHAPTER VI LinUC ey BilRalhr TRl TONS aliD DuCOVPOLITION OF THE

PriiouR LRODUCT O U(n) LOVULES.

Tengor Product of lModulcs

The concept of tensor product we used in III and V is not general

enough for the following. Let us begin with a few definitions.

Definition 1:

Let I be a right module and N a left ncdule over an arbitrary
ring & with an identity element. Let I be an abelian group,

)

written additively. 4 bzlarnced map f of +he Certesian vroguct
M

set M x N into P ascigne to eoch pair (m,n) € U x N an elenent
f(mu,n) & P, so that

f(ml+m2,n) = f(ml, n) + f(mz,n)

f(mgnl+n2) = f(msnl) + f(m,nz)

f(m,r n) = f(m r,n)

for all r € R, mié M, nie I,

Definition 2:

Let f: Hx 8§ —> P 2nd g: L x N —> 7 be balanced maps of
M x Il into the additive abelian groups P and T resp..wWe say that

f can be factored turough 1 if there exists a homomorphism f*:

T —> P such that f£(m,n) = *[¢(m,n)] for all (m,n) € M x N.

In other words, f can be factored through T if there exists a

homomorphism ¥ ; T —— I such that the disgram

2]

o
i)

b

)

is commutative.



We now state without proof

Lheorem 1

Let Il and § be right and left i-modules, resp.. There exigsts an

abelian group T and a balanced map +: M x N —> T  such that

(1) The elemente t(m,n) generzte T, and in fact every element
M4 e o e m ™ T N
of T is a sum E;t(hi,ni), m, € 0, ng SAR N
(2) Gvery balanced man of M x ¥ into an arbitrary abelian group

P can be factored throush L.

Por a prcof of this theorem wee the alre.dy mentioned book of

Curtis, Reiner.

Definition 3:

The group T constructed in Theorem 1 is called the tensor wroduct

of M and N, and will be dencted by Ii C)B M.

The next result shows that tiis teusor vroduct is uniquely de-
termined up to iscmorphisim by the pronerties (1) and (2) of

Theorem 1,

Corollary 1

Let (M ® L H0,t') be another pair consisting of an abelian group

[
L
M @' N and a balanced map t'. M x I —— L@y W such
4

R
that (1) and (2) of Theorem 1 hold. Then there exists a group

1
isomorphism A of U (EDP o oonto I @Dp N such that for all
L L

(myn) € M x U we have A[t(m,n)] = ' (n,n).

Proof:

Applying Theorem 1, there exist homomorvhisms A : M N —>
-~ < > 9 I R
@4 N end T @0 —> M @, N such that

xS

AN [t(m,n)] = ' (n,n) and /u,[t'(m,n)] = t(w,n). Because the



¢

Lt ,n)k ond i‘

-

(&

elements

Y gencrate the grouw:

ond M @ I resp., it follows that mA and X/& are the
EAS
identity mappings on M @, N and M @ ! I resp.. Therefore both
4L L
A and A are isomerohisms onto, and the corollury is proved.

We have defined the te.isor product I

C@,,_i N and have constructed
L

a balanced map ¥ x N — i Q@}{N} lenceforth we shall write
m &® n for the image of (m,n) under this map. .e see that
m, + m X 1 = il ©» n o+ un n
(mq + m,) ; ® , @
n & (o, +n,) = m (& n + m & n (1)
1 2 1 2
nr G n = n ® rn
for all m, & I, rﬁ_e N, r & H.
As we are ultirvatcly interested in representations, we novw in-
vesgtigate the circuunntances under which I Q@J:.N is a module
L
over some ring. we say thet an abelian group I is an (3,R) -
bimodule cver the rings R and S if M is left S-module and a
ht R-iodule, cnd if (s m) r = ¢ (mr) for =zll s € 5, r & R,
€ M. T.g., any leflt module M over o commutative ring R is an
(R,R) - bimouule if we define mr = rm, r & 1, m & M,
Proposition:
If M is an (5,0t) - bimcocule and # a left R-module, +then M (:>R
is a left -module,
Proof.
Let s be a fixud clcuent of 5. tlien the mapoving (m,n) —> sn@n
of M x N into M @DR_l is a balanced map, and, by Theorem 1, there
exists an endomorphism "\ of M N zuch that ~ m n) =
; + ®p I wu Y (@ n)
@ n. Je can now define, Tor each s € o,

I

s ( ;E_mi &

n.
1

Zi STy ® n,

S s



and conclude that M & . ¥ is o left S-mmodule with regpect te this

operation.

we shall neeu the follovirng theoren

L]
sy

Let M be a right f-wodule cuch that I = ul &> Hg vhere M

are submodules, ond 1ot N be 2 left Remodule. Then

1 and o

O

B@y Y =0 @0 @ 0, @y 0

ice. M @ ¥ is the external direct suw of the H, @, 1= 1,2,
ey

i

Proofs
The direct s deconwosition M = N169 M2 imolies the existence of
Ty Ty HomR(M,M) such that
A =7 + 7 T, T, =T, T, = 6 i
1 2 7 i ] j i ij i

=N (2)

set Gi = ﬂ&_@Q A, 1=1,2 5 +hen each €. is an endomornhiam

of M @ I, and, from (2), we have

EAS

/_I_L:r"-)-j+6 66’"—‘% 6,26,,6.

nNo
[
e
.
[
[
T
-

Yottine Ti =& (M @ . i), we conclude that I C)R‘N = TiéB T,

In order to complete the proof, it is sufficient to show. for
& I 9 9

I. e

[

PRRR AN S
example, that rl = by @3;
L

that Tl has the characteristic

shall nrove this by showing

of a tensor wroduct as

given in Theorem 1. ‘e must ind a balanced map o Ml x N o—> 7

M < i} generate U
& 17 n & generate 1

- 1
for which the images i-y(ml,n): m

and such that every balanced map g: M, x N ~—> ¥ can be factored

through T-. by meangs of . Let us write
& 1 7Y

t

o2

x> M @ [

for the mapying determined in Theorem 1. Lince Ml x N CMx N,



ve mey set ¢ = 4| , S0 that @(mq,n) = t(ml,n)
.ox '

st
=

for all m, € Hl’ n €Y. It is clear fron Ml = nlM and the defi-
m

nition of 11 that the image of Ml x N under ¢ does indeed genc-

t g Ml x N > T be a balanced map, where 0 18

any additive abelian group. The bottom line of the following dia-

o

rate Tla Now 1

gram sives a balancedman I x ¥ —> I, and so there exists u

homomorpnism g* ¢ M (X It N ——— P meking thec diagram commutative,
_ = : >

Hox N e My N o————> ]

Let us get oo == o% | L ) . .
5 ohet & “oim ., 80 thet g is a homomornhism of T
i Ly 1 - 1

into P. To complete the proof, we need only verify that
m

gl ¢ =g on M, x N, But for & M n & N

b 1 1€ Y s e have

gl_ ¢ (ml,n) = gl t (ml,"}) = g% % (ml"n>

= g(ﬁlXil) (ml,n) = g(ﬂlml,n) = g(ml,n).
This estoblichen the recult.

we remark that if N =1, @ M, , @11 these heing (8,1)~bimodules,
and if N is & left li-module, then the iscmorphism

]

M@, = @, @ N, @, x

IS

obtained in Theorem 2 is an isomorvhism of left S-modules.
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-

Wow let I be o leoft R-module; since R ig on (R,R)-Dbimodule, the
tensor rroduct & &, ¥ is a left R-module. The following result

ia bagics

R * A N = N ag left R-modules.

ihe map (r,n) — rn is 2 balanced map of £ x N into N, and so
by Theorem 1 thers exists a homemorghism ¢ : R ® ., N ——> N

such that ¢ (r & =n) = rn. On the other hand, we may define a

9 J
homomorshism i I ——> R ®, ¥ by Yn) = 4A®O n, n €N,
Clearly ¢} = identity map on ¥; furthermore, Y ¢ (r @ n) =

!

U-(rn) A m=r ® n, so 4o acts as the identity map
on B @ N . This inplies that ¢ is en iscmorphism of R N

onto I, and it is easily seen to be an d-isomorphism of left

R-modules. Thus the theorem is proved.
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we add a few remarks on tonsor mreducts of vector snaces.

Let 11 and N be finite-dimensicnal left wvector spaces over a field
IK ., 4 we have seen ezrlier, M is a (JK,IK) . bimocdule, ond

M & N becomes a K - snuce 1 ve define

hed T " T g 3 B e o 3
vhere g & WK, w € &, v, e &, Now « 1s isomornhic to an external

direct sum of r copies of WK where r = dim M, 4nd so by reneated

B® PR T @ .,.., ® 17 (r copies)

as left WK - modules. This nroves that

il

. T Sl T . SIS NI N
dim b @ o= aly be e din A
K

suppose now thotb

.
e

M= 1K g @ . . .® K, r = dim i

L

N = ik nl ®...¢ K n_ g = dim N,

il

Then using the distributivity (1) we sSee that every element of

2 Cﬁij (“1.1 ® nj) %y e K .

is re, this nroves that the elements

] 1
n., ® n, :1idr, 1l <ig SS form = bacis of Il .

[}
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2. Induced Hepresentations.

Let H be & subgroup of a finite groun G, and let K be an arbi-
trary field. J11

K -~spaces. Since IKH is a subalgebra of WK G, every KG-

modulecs will be aszuned tc be finite-dimensional

4
1

module L iz alsc a K Hemcdule which we chall denote by LH’ Thus
Ly has the same ynderlyine vector gpace as L, but the domain of
left operators is IK¥ iastead of IKG, Of course, 2 matrix re-
csentation L - of II efforded by LH is obtained from a matrix
reprczsem;ation T of G afforded by L by setiting TH =T .
H
Qur objective here is tc describe a constructicn which =sgsociates

with ezch K B-module ¥ on %induced™ K Gerodule I,

Let H be a subgroup of G, and let i he & left K Homodule. Then
~ . / - Y Y E - o~ g
K G is a (IKG K - bimcdule, and we nay form the left K&

-=MO C}_T’Ll e

Rl

]

T K @y M

which is zaid to be induced from M., “he representation of G

{

G
afforded by M7 is called =n induced renresentation,

Let us stert with 2 left coset decomposition

G = g H v {:ZH [ () H ; t = 4in G over i

&1
where 81 = 1, Zvery clement of G ig expressible as a nroduct
gihs 1 ist, h e i, with uniquely detormined g; ond h,
and so every element of K G ig uninuely exprescible as Z z.bh.,
b, € K H, Thus ve have

W< G = gy k 5 & ... & &y K H

so that KG is o free right Kibwodule with hasis § g

Using Theoren 2, we obtain

G— Tr — 3 i~ -~ v o
M = gl K H @)‘K . M G H—) gt K H @ K H M



which we may rewrite as
M7= &1 ® " ®... ® g @Nu (3)

by virtue of the fTormula

g P @ n = g @b, bE Wi, m &l

In (3), we have a decomposition of M inte UK -cubspaces which

are, in general, ncither left K G-modules nor WK He-submodules
G “” 3 T ne _

of M7, Note that, since g W H = KH ag it IK Hemodules,

L S

with the isomerrhism being riven by ;b — b, ve KH, it

follows that

=

g, KE ®yn I 2 KE @ Wy 0= R

hy Theorem 3. Thus €. & m —==>  hn gives an isomorphism
which 1s ensily seen to be o IK-icomornhigm. Thorefore

anc we conclude further thet cvery 2lement of M7 is expressible

as Z,gi 8 uy with, unicuely determined Ujseoos U in .

i i"
- . R ¥ 7 . . e
It followe that if i_m mot is e K -bagis for M, then

the elemente

{ &; @ m. P 1 ¢gigt ,Lgjgr j (4)

G
form a K --bagis for M .

We are now going to determine a matrix representation afforded

G . . R ,
by M once we know a matrix revresentation afforded by M.

X M affords

[ad 1 . - 3 ~ LT . -
ounrose that, relative to its KK ~basis m m
4 U { l 9@ 00y -~r 3 9

the matrix revresent=tion T, so that
hmnm = Ei a..(h) m, , T(h) = (a..(h))
J AJ

ji
. . G
for n £ H. Relative to the IK -basis (4) of Mrjlet ug compute the

matrix representation U afforded by M7, To do this, we must express



e
l..._’
AN
.
B

g (g4 © n;J.) as W -lincar combinat
We may vrite zg. = gl‘_h Tor some h &€ H and for zome k

1< k & t5 then

e, O n.) = oge. &) w = ¢ 5
1) i el ] o i e 4 c.)l(, X m _’
. ] < ]
r
- \ N
_ { 8l Fe Ty
/ S 3 l‘} Qk @ ‘ms °

S=

-1

k
of « . from H to & by scttine ¢ (x) = 0, x & G, x ?ﬁ o

’
s i S

flow we have o= g g. . 1f we extend the domain of definition

(m

Cde

tihen we may rewrite our formula as

A .t..
= v

;*:(gi@ J.i’.> = S_ L e (;Q:\ e, ) . . 3] m, o
=1 k::l

If we arrange the Woroig elementa (4) ia the order

fQ
b

Hyseeey O @ m, oz

G & Mygenny 7 3 m,

)

e~ Feaiey
(X m co ¢ & * m
</ M8y O 0

)
5
-
D
}-.{
D
)
)
oy
m
1
o

then the nreceding coustion implies th

(i 1)....(i,p)

(i,1)
Ulz) = T(g™ ) :
: : .
where T is extonded $o all G by setting T(x) = 0 for =x € G,

Xﬁf H. Thus U(g) is partitioned into o t x t array of r x T blocks,
and the hlock in the j th “lcck row @nd i th block column is

.). Specifically we have
i

=L PR |
L(\gl «‘Ig-, ) ° ° ° l'[ \.ﬁ’;l g§t>




vefinition %:

. , , g . . G G,
If o is the char cter afforded by M and M- that of M7, we call

G - ¢
M an induced cheructer and say that}¢, is dinduced from am.

If the WK Hemodule i affords a2 matrix representation 1, we extend

as befere the donain of definition of 1 to G by letting © vanish

outside E

O R v ﬁ{ H

o . . G :
'hen relatlive to a suiteble husis, M 2ffords a matrix represen-—

-
)

WG
i oiven b Yy

N »
T /o ] . . . - ~
T (x) = (T \éj x %i>) 1<£1i, jgn, x €U .
G.
The induced charicter a4 cbtained from this satisfies:

jus (z) = j{: ,f; (g;l X gi) , X €& G (6)

where A4 coincides with A on H and vaniches outside H. Since

e (h“ly h) = /ML(y) , h & H, v & G we deduce that

Sx) = =+ S (+71% 1) (7)
/A h L—- M I UL

ct
(';\5
&

hH = order of H, x & G,



A map w: G —-==> K iz caliled 2 cizss Tunction if
-1 \ . .
w(t "2 t) = wlg) ;5 g,t € G. Jince cless furciions can be added

i
‘nd multiplied, it is clewr that the set cf(E) of 41l classe func-

g L

tions on ¢ forms on cigebia over K of dimension equal to s, the

number of conjusute clagsee in G, lormule () then provides a

§ -

)

method for obtaining from CuCh/A € cf(H4) an induced clags func-

tion/¢ € cf(G),



L.

f—t

\J
1

3. I'robeniug Recirrocity Tiicorem

S o mm— e ———

We remind the reader that, since the ciharacter of 2 module de-
termines the module up to iscuorvhicm, it is clear that each
result on chiracters will imply the corresponding result for

modules, and vice versa.

two closs functions on G. Pefire an inner product

0

Let w, v e
(w, 7 ) by

k, = order of G

rthen the orthozonality relations for characters imply (fX(l),jK(J))

. i o (O o S .
= 6ij if 7Q( ) end 7((3) are members of the full set of irredu
cible characters of G. In particuler, we have the

Let ( be tie character of the iriecucible K G-module Zi’
let po he the an orbitrary wWe-module M, Then

e inner product ) is equal to the number of compo -

sition factors of I which are isomorphic to Z.. e shuli call

(1) ot ”
Cpay X |

) the multiolicity with which M contains L

Let }A be the character of & K G-mocule. Then /4.‘H denotes the

restriction of M to the subgroup H & G. “e now prove



Theorem 4 (Frohenius Recinrocity Theorem)

a5
1 “

Let H be a subgroup of G, ond let Reclf(d), Y€ cf(H). Then
(%, XD = (7, X) . (8)

In perticular, if X and Y are characters of irrveducible IK G -
and 4 - modules, resp., the muiltiplicity of W4 in CKW H is the

seme as the multinlicity of X in ’H—G

©

Proof.

Define Y to colncide with Y on H :nd vonish outside H. Then

Iy G 2 l G -l
(o5 ) = g > 4% X @

g &G

e Z /Lf’(fxml;z:{) X (xmlp:{)

h—(} }.’l . o O
A BN

X,6eG

For fixed x € G, 23 £ runges cver ol elemonts of G, so does

X ex. Thus

2
VQ
]

il
Sip
b‘l.—'

i
N
£ .
<

|
3

|

N

since Y vanisnes outside Y. This »nroves the theorem.



Let /\i be two irreducible representations of U(n) correspon-
ding to Young tables Di with fi boxes and let Zhi be the cor-

responding representations of Sf . Turthermore, let

1
AMeA, =ERn A (9)

be the decomposition of the tensorproduct representation
/\l @)/\2 into irreducible reprecentations /\ with multi-

plicities m

/\ .
5 P o X an naturelly be em in ‘ = .
The group Sfl £5 can naturslly be embedded into Sf,f fl+f2

- 117 -

4, Analysis of the Tensor Product of U(n) - Modules

The representations /\ in (9) correcpond to Young tables D,
with £ boxes. We aleo consider the representation ﬁk/\.of Sf
belonging to D

In this section we shall vrove the following

Theorem 5:

With the noctations introduced =hove, the multiplicity LN is

equal to the multipiicity of the representation ( lej AN 2)

of 3 in A , and also cqual to the multi-

z 9
f1- f2 NMs, xs
£ fo g
plicity of élﬁ\in the induced renresentation ( LX:L,ZS 2) £ of

S
.
f

To prove this, we begin with a few preparations.

We require first a useful characterization of induced modules.

In this result, H denotes a subgroup of a finite group G.



Lemma 1:

Let M be a WG - module gsuch that for some WKH - suvbmodule L,

% is a direct sum

m
Moo= 0 el ,

i=1

where the ? gi} form 2 set of representatives of the loft
[
s . . G
cosets of U in G (G = g1 Ce ey H). Then M 2 L 48
IK ¢ - modules.

Proof:
Using (3), we verify at once that > gi® hy — Z g;hy
. . Y G . ; . .
is a W G - isomorvhisrm of I onto I, und the Lemma is proved.

Corollary 2.

TLet I be o left idcol in W ECWE znd congider the WG - left

. ; . ] o e p
ideal M generated by wn. Then I N o e K G- medules.

Proof .
Since IK G is free over G, we have

M o= WGL = (D e KHL = @giL
With Lemma 1 the Corollary is thus proved.

Now we consider again the situation of Corollary 2, but assumne
that T is & mininsl left ide=l. L has the form K H e', where e'
is a primitive idempotent of W H. Clearly M = IKG e', In order

to find the irreducible IK G - submodules of M, we have to de-

compose e' intc a sum of orthogonal primitive idempotents of K G:

1 —_ )
e' = E eyt e . . . (10)
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isomorphic left ideals in IKG) into partial sums. Lhe number of

. . . - . . N LG
irreduciblc modules isomorphic to IKG Ch contained in [I. = L

is equal to m. According to the reciprocity theorem of Frobenius

m is also the number of KH - submodules in IKG ei"yﬁgggugyg

igsomorphic to L.

\
|
Here we have collected ecuivalent idempotonts (which generate

We now apnly these results for the particular case H = S X O,

G =9 .+ £, = *T. It is eany to see thsat

£f7 71 2

| x 5, ) =2 S In this case L and I ha
‘K\(Sfl x Mfz) = W;Sfl. @ K g, + In this case L and M have
the form
L = (el @ 62) k‘/\<bf X \f- )Y
. (11)
i {_\3 \KS > A ot
M=1 f o (el(z)ez)lK.of ,

where . are orimitive idewpotents of W(Sf .

4
-

Now let V be a vector coace of dimensgion n =nd cousider the
: L ® L. . - . :
U(n) -- medules e, v @+ , i =1,2, znd their tensor »roduct

L, o
ey Vv 1 & e, 1 >

<!
)
H)
)
H
~~
)
—J
®
[0
L
<2
®
b
~~
=
N
S~—

AN

The decomposition of el(i)e into & sum of primitive orthogonal

2
idempotents of k.Sf goes perallel with the reduction of the

U(n) - module (12) into irreducible U(n) - submodules.

Thig, and the underlined conclusions after Tormula (10), vprove

Theorem 5.
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5. Coupling of inecuivalent groups of electrons

Let us cousider two groups of 1., i = 1,2, eicctrons in shells

(n., ﬁi). Let V. be the space spanned by the (LEi + 1) one

i
particle stutes of each shelli and let Mi be an Sf_ - submodule
- i
f. ; . : D
of V&ic> i . Furthermore, let M be the Se o submodule of
X f - ] - A o : : )T
(Vl @ VB) ® , T = fl+f2’ generated by L = “11”2’ This ig the

subspace of f electrons with f. clectrons in Hi, i=1,2. ve
3

claim that M2 L', o prove this, let

S, = g, (9, =3, )U .. . Ug (5,.x5,.)
f 1 fl s m T
be & decomposition of o, inte 5. x & -~ left cosets. Now
* f i) f2
m
M=K Sfl‘ = (g r(},'i (Oleo f2 ) ) L = Z {%;‘i L ( 13)

This sum is direct. Ior this it ig suvfficient to show that

m
> e (20 @ ®f2 ) (14)
i=1

is direct. Now N is the direct sum of gpaces

<
}_}
®
©
]_<1

where T, indices iy are ecuel to 1, 1 = 1,2, Hence the dimension
of N is al to

El—w+f2) ain (v, BT @ v. @) C (¢om) sin (v.O T gy & T2y
SN w vy T @ vy = (& 1T @, /

This proves that the sum (14) =znd hence the sum (1%) is direct.

-

Lemma 1 implies that the couled swice of two ineguivalent

groups of electrong belonging to representations & A of

el —ne
—1
Sf s 1 = 1,2, carries the Lnauced reﬁrewenfwulon (4)1, FAN )
e m L o o i e e e o i i aas i e pan i
of B accoriling to tnhe Thecrew of Erobenluby the 1rredu01ble

L Ep




epresentation £Sof ©. gppears oo mony times in this coupled

o AT - e L/l E,_ ™
- contains ( A"‘l‘?"'" __2) of )f'] x bfr)'
1 1o 1 2

The Pauli orinciple restricts the A's to those corresponding

to Young tabtles with not more than two cclumns.

We now «pnly these results and Theorem 5 to show that the Pauli
wrinciple is ineffoctive between two different shells (this is

one of Tund's rules).

With the notations used in this section, let (Li, Si) be two
(L ) 3) terms of fi electrong in the two shells considered.

In confi uratbion space trese terms belong to reprecentations
R i , -
(D7, &N.) of 30(3) x 8. « 70w we couple these two groups of

electrons. As we heve seen,in configuration spzce the space

of the coupled system corrics the revpresentation

of L
~,) ) = B, a)
1,0

In this sw !Ll Ig\ & LS I+ L

Because of the Fauli principle, we have only to consider those
A belonging to Youns tables with not more than two columns.
Now the multiplicitymA of such a & is egual to the multi-

plicity of (45:L,zx 2) in A . It is easy to show that

bflx sz
~ ~)
m is then also ecual to the multizilicity of (A 1,45 2) in
NG o . Theorerm 5§ finally proves that
A uf X D
1 -2
1 for | S;- 5, & 8 < 5y + b,
. . N
mo= (S: Spin belonging to A )

0 othervise




The (L,S) terms of the combined system are thus

é I s Ll+ LZ,

sense, the Pauli princivle is ineffective between the two
different shells.

| 5y~ 5,1 & O & 8+ 8,. In this
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