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Superconductivity

Electrical resistance (1911)
Field expulsion (1933)

Meissner-Ochsenfeld effect
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Conventional superconductivity

Order parameter   
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r ( ) structureless complex

condensate wave function

Microscopic origin: Coherent state of Cooper pairs
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The novel superconductors
Heavy Fermion superconductors:

CeCu2Si2     Steglich et al. (1979)

U1-xThxBe13 Ott et al.  (1983)
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The novel superconductors

High-temperature superconductors

Layered perovskite cooper-oxides

La2-xSrxCuO4                Tc=45K

YBa2Cu3O6+                Tc=92K

HgBa2Ca2Cu3O9         Tc=133.5K

Müller & Bednorz (1986)

AF

SC

T

x

TN

Tc

T*

Organic superconductors

(TMTSF)2M  (M=PF6, SbF6, ReO4,…)

(BEDT-TTF)2M …..

Tc ~ 1K

Tc ~ 10K

Jerome, Bechtgard et al (1980)
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The novel superconductors
Ferromagnetic superconductors:

UGe2      Saxena et a. (2000)

ZrZn2    Pfleiderer et al. (2001)

Superconductivity within

the ferromagnetic phase

Sr2RuO4

RuO2 plane

some similarities with

high-Tc superconductors,

but     Tc = 1.5 K

spin-triplet superconductor
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The novel superconductors - under extreme conditions
8

Iron under pressure

Shimizu et al. Nature 412, 316 (2001)

Hydrated NaxCoO4

Takada et al., Nature 422, 53 (2003)

Layered structure: triangular

Superconductivity in a

 frustrated electron system 
Tc ~ 5 K



The novel superconductors 
9

Time-dependent superconductivity
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PuCoGa5 Tc  = 18 K

Thompson et al.  (Los Alamos) 

Skutterudite

PrOs4Sb12
Tc  = 1.8 K

Bauer et al.  PRB 65, R100506 (2002)

Multiple phases
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The novel superconductors - no inversion symmetry 

No paramagnetic limiting

CePt3Si

Bauer et al. PRL 92, 027003 (2004)

Hc2  exceeds drastically 

the paramagnetic limit

Ferromagnetic quantum phase transition

UIr
Tc=0.8 K

Tc=0.15 K

Akazawa et al. J.Phys. Condens. 

Matter 16, L29 (2004)



Bardeen-Cooper-Schrieffer

Microscopic theory of superconductivity



BCS mean field theory

simple model: 

band energy: 

band energy pairing interaction

pairing interaction:
attractive contact 

Interaction   g < 0

consider only scattering between zero-momentum 

electron pairs of opposite spin (spin singlet) 

k’

-k’

k

-k
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BCS mean field theory

simple model: 

mean fields: 

decoupling of interaction term by means of

particle density

spin density

BCS - “off diagonal”
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BCS mean field theory

simple model: 

replace:

mean field Hamiltonian:

,

with
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BCS mean field theory

find quasiparticle states with

Bogolyubov-transformation

quasiparticle energy
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Quasiparticle Spectrum

electron-like

electron-like hole-like

hole-likeE

k
kF

k

Ek

quasiparticle excitation gap:   

condensation energy gain due to gap

Self-consistence equation:

Fermi distribution function

solution only for g < 0    attractive 
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critical temperature
continuous transition (2nd order) linearized gap equation

N( ): electron density of states Interaction with characteristic energy scale

cutoff

constant density

of states between

c and + c 
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Zero-temperature

Gap at T=0:

Condensation energy at T=0: Econd = Es - En
energy gain relative to normal state

depends on density of states at the Fermi surface and the gap magnitude

weak-coupling approach
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Zero-temperature

Gap at T=0:

Condensation energy at T=0: Econd = Es - En
energy gain relative to normal state
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Pairing interaction

Cooper pair formation (bound state of 2 electrons) needs attractive interaction

electron phonon interaction: electrons polarize their environment

renormalized Coulomb interaction
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electron-phonon   versus   Coulomb interaction

Polarization effects:

with Thomas-Fermi screening length

renorm.Coulomb electron-phonon

qq

V
phonon spectrum

attractiverepulsive repulsive

q

D Debye frequency:

characteristic

energy scale
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qq

V

Poor-man’s model
N(0)V

+W-W + D
- D

µ

poor man’s electron band:

N( )

+W-W

band width:    2W

constant density of states: N( ) = N(0)

poor man’s interaction:

Vk,k’ = V( , ’) = VC + Vep

N(0)VC =
µ           | , ’ | < W 

0             otherwise

repulsive part

attractive part

21

N(0)Vep =
         | , ’ | < D

0            otherwise 

Anderson & Morel (1962)



Poor-man’s model
N(0)V

+W-W + D
- D

µ

linearized self-consistent gap equation:

poor man’s interaction:

N(0)VC =
µ           | , ’ | < W 

0             otherwise

N(0)Vep =
         | , ’ | < D

0            otherwise 

repulsive part

attractive part

Vk,k’ = V( , ’) = VC + Vep

-W +W

- D + D
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Anderson & Morel (1962)



Poor-man’s model
N(0)V

+W-W + D
- D

µ

linearized self-consistent gap equation:

-W +W

- D + D
transition temperature Tc

renormalized Coulomb repulsion

Retardation effect:

  Coulomb                fast   

  electron-phonon    slow

W

D

Tc = 0   even if   <µ
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Anderson & Morel (1962)



Retardation effect:

renormalized Coulomb repulsion

 << 1weak-coupling regime strong-coupling regime  > 1

Eliashberg, McMillan (68)

Important: W

D
~

TF

TD
>> 1

Metallic strongly correlated 

electron systems

small energy scales:  TF

small band widths:     W

strong effect of Coulomb repulsion

handy-cap for electron-phonon mediated

superconductivity
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When Coulomb repulsion is too strong

for electron-phonon induced pairing

Alternative ways to superconductivity



Symmetry of pairs of identical electrons:
  ss' (
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k ) = ˆ c r 

k s
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= (
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orbital spin
wave function totally antisymmetric

under particle exchange

'sskk

rr

  

r 
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r 
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even parity:

odd parity:

l =0,2,4,… ,   S=0  singlet

l = 1,3,5,… , S=1   triplet

even

even

odd

odd

Alternative ways to Cooper pairing
Coulomb and electron-phonon interaction very short-ranged ( TF) “contact interaction”

Bound Cooper pair wavefunction:

with

relative angular momentum  l=0
important for “contact interaction”

How to avoid Coulomb repulsion?

higher-angular momentum pairing

l > 0 

“contact interaction” not effective
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Requirements for the formation of Cooper pairs

Anderson’s Theorems (1959,1984)

Cooper pair formation with P=0 relies on symmetries
which guarantee degenerate partner electrons

Spin singlet pairing: time reversal symmetry
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r 
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harmful:
magnetic impurities
ferromagnetism
paramagnetic limiting

Spin triplet pairing: time reversal & inversion symmetry
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harmful: crystal structure without inversion center
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Paramagnetic limiting:
Zeeman splitting of Fermi surfaces exceeds the gap magnitude

No singlet pairing possible

lack of time reversal symmetry

µBH  > 

Antisymmetric spin-orbit coupling: lack of inversion symmetry

Crystal structure without

an inversion center

Bauer et al.

e.g.  CePt3Si

no mirror plane for    z            - z

CeCoIn5
Paramagnetic

suppression

1st order transition

modulated Fulde-Ferrel-

Larkin-Ovchinikov phase

Radovan et al.
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Alternative mechanism for Cooper pairing

Pairing from purely repulsive interactions:   Kohn & Luttinger (1965)   

screened Coulomb potential in metal has long-ranged oscillatory tail (sharp Fermi edge)

Friedel oscillations:  
attractive part

pairing in high-angular

momentum channel  l >0
very low !

Pairing by magnetic fluctuations:      Berk & Schrieffer (1966)

easily spin polarizable medium

Tc   reasonable for higher

angular momentum pairing

longer ranged interaction

AF SC

Quantum Critical

PointT
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Spin fluctuation exchange mechanism

H(r,t)

Exchange interaction: 

spin-induced local “magnetic field”

induced spin polarization:

I = U/

(r’,t’)

dynamical spin susceptibility

Spin density-spin density interaction:

simplified spin fluctuation exchange model
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Spin fluctuation exchange mechanism

effective pairing interaction:

dynamical spin susceptibility:

for isotropic electron gas:

q << 2kF ,      << F   

q

R
e 

(q
,0

)

q

Im
 

(q
,

)

RPA

paramagnon resonance

nearly ferromagnetic
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Spin fluctuation exchange mechanism

effective pairing interaction:

Cooper spin channels:

S=0 spin singlet

S=1 spin triplet

| k-k’ | << kF S=0: repulsive        S=1:  attractive
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Spin fluctuation exchange mechanism

Pairing for spin triplet  l=1  (p-wave):

angular structure of gap function

k =  gk

Projected effective interaction:

V

V1

+ c- c

s= N(0)V1

characteristic energy: paramagnon spectrum
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Spin fluctuation exchange mechanism

V

V1

+ c- c

s= N(0)V1

characteristic energy: paramagnon spectrum

Stoner instability criterion:

IN(0) =1

Quantum phase transition
Paramagnet         Ferromagnet

V1 8

c 0

SC

IN(0)

T

FM

1

PM

Quantum 

critical point

FM 8 FM correlation length more detailed analysis: Monthoux & Lonzarich (1999- …)
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Generalized BCS theory

New aspects



Generalized formulation of the BCS mean field theory

BCS Hamiltonian:

Mean field Hamiltonian:

Self-consistence

equations:
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Self-consistent gap equation

Bogolyubov transformation Quasiparticle spectrum

Note:  quasiparticle gap is k-dependent

Self-consistence equation:
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Structure of the gap function

2x2 matrix in spin spaceGap function:

orbital spin

even parity, spin singlet

odd parity, spin triplet
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Structure of the gap function

2x2 matrix in spin spaceGap function:

Even parity spin singlet

Odd parity spin triplet

represented by scalar function

represented by vector function

(k) = (-k)

d(k) = - d(-k)

even

odd
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Structure of the gap function

2x2 matrix in spin spaceGap function:

Even parity spin singlet

Odd parity spin triplet

represented by scalar function (k) = (-k) even

37'

dx ( ) dyi +( ) + dz +( )spin configuration   "
r 
d 

r 
S "



Transition temperature

Pairing interaction:

Self-consistence equation:

density-density spin-spin

even parity spin singlet odd parity spin triplet

T     Tc T     Tc

eigenvalue  
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Some thermodynamic properties



Specific heat discontinuity at T=Tc

2nd order phase transition          discontinuity of specific heat

T
Tc

C C
CnCs

Entropy and specific heat:

Specific heat discontinuity:

Gap anisotropy:

“universal value”

m

39

maximal gap

weak coupling



Low-temperature properties
thermodynamics is dominated by the excited quasiparticles

Isotropic gap function:
k = m = const.

key quantity:   density of states

k = m gk

N(E)

N(0)

m
0

E

gap
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Low-temperature properties
thermodynamics is dominated by the excited quasiparticles

key quantity:   density of states

k = m gk

line

node

N(E)

N(0)

m
0

E

pseudo

gap

Anisotropic gap function:

41
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Low-temperature properties
thermodynamics is dominated by the excited quasiparticles

key quantity:   density of states

k = m gk

point

nodes

N(E)

N(0)

m
0

E

pseudo

gap

Anisotropic gap function:

42

quadratic

N(E) = A E2    for E << m



Low-temperature properties

Specific heat: restricted to quasiparticle contributions

Isotropic gap function: activated behavior with a real gap (semiconductor-like)

Anisotropic gap functions: contributions from “subgap states”

T2         line nodes

T3        point nodes

powerlaws

43



Low-temperature properties

powerlaws in other quantities depending on gap topology

line nodes point nodes

specific heat

C(T)

London penetration
depth    (T) 

NMR  1/T1

heat conductivity
(T)

T2 T3

T  (T3) T2  (T4)

T3 T5

T2 T3

quantity

London penetration depth

YBa2Cu3O7

Hardy et al.

high-temperature superconductors

with line nodes in the gap

NMR  1/T1 YBa2Cu3O7

Martindale et al.
1/T1

T3
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Other characteristic properties



Dirty metals:

Pure metals:

k

Suppression of 

superconductivity

Impurity scattering   -   Anderson’s theorem (1959)

impurity scattering (non-magnetic)

electron momentum well defined

FS

momentum averaging over

the Fermi surface

Interference effects for Cooper pairs

conventional pairing:  l = 0 isotropic

FS momentum average harmless  
Anderson’s theorem
for non-magnetic impurities

unconventional pairing:  l > 0  anisotropic

++
-

-
FS Momentum average

destructive interference
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Suppression of 

superconductivity

Impurity scattering   -   Anderson’s theorem (1959)

conventional pairing:  l=0 isotropic

FS momentum average harmless  

unconventional pairing:  l>0  anisotropic

++
-

-
FS Momentum average

destructive interference

Suppression of Tc

with increasing impurity concentration

T
c 

(K
)

Rres  (µ cm) nimp

Sr2RuO4

Abrikosov & Gorkov

Mackenzie et al.

mean free path:

life time:

Tc     0

only clean samples are superconducting

46

Interference effects for Cooper pairs

Anderson’s theorem
for non-magnetic impurities



Spin susceptibility

Spin singlet pairing: Spin polarization is pair-breaking

TTc

P

Pauli spin susceptibility

Yosida function

suppression of spin susceptibility

due to the gapped quasiparticle

spectrum

0
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Spin susceptibility

Spin triplet pairing: Spin polarization is not always pair-breaking

TTc

P

Pauli spin susceptibility

Yosida function

Equal spin pairing:

pairing with parallel spins

in the same direction for 

all directions of k0

  

r 
H 

r 
d 

r 
k ( ) = 0 equal spin pairing

parallel to field

  

r 
H ||

r 
d 

r 
k ( )

equal spin pairing

perpendicular to

 field
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Coherence Factor  - transition probabilities

Nuclear magnetic resonance

I nuclear spin

spin flip rate:



Coherence Factor  - transition probabilities

Nuclear magnetic resonance

I nuclear spin

spin flip rate:

Coherence factor:



Coherence Factor  - transition probabilities

Conventional superconductor

1/T1

Tc

T

Hebel-Slichter-peak

Enhancement  due to

-  density of states

-  coherence factor

exponential

Unconventional superconductor

1/T1

Tc

T

No enhancement

powerlaw



Coherence Factor  - transition probabilities

Conventional superconductor

1/T1

Tc

T

Hebel-Slichter-peak

Enhancement  due to

-  density of states

-  coherence factor

Unconventional superconductor

No enhancement

exponential

1/T1

Tc

T

powerlaw

NMR  1/T1 YBa2Cu3O7

Martindale et al.
1/T1

Tc


