Aufgabe 1.1 Van der Waals Wechselwirkung

Betrachte zwei Wasserstoffatome im Abstand \vec{R} im Grundzustand. Eines der Atome befinde sich im Ursprung, während das andere bei \vec{R} liege. Der Hamilton-Operator ist gegeben durch

$$H(\vec{R}) = H_1 + H_2 + H_{WW}(\vec{R}),$$

wobei $H_i := -\hbar^2 \Delta_{\vec{r_i}}/2m - e^2/r_i$ und

$$H_{WW}(\vec{R}) = \frac{e^2}{R} + \frac{e^2}{|\vec{R} + \vec{r_2} - \vec{r_1}|} - \frac{e^2}{|\vec{R} + \vec{r_2}|} - \frac{e^2}{|\vec{R} - \vec{r_1}|}.$$

Wir wollen die Van der Waals Kraft $\vec{F} = -\nabla E_0(\vec{R})$ für grosse Abstände $a_0/R \gg 1$ berechnen. ($E_0 = \text{Grundzustandsenergie}, a_0 = \text{Bohrscher Radius.}$)

- a) Wie lautet der Grundzustand und die Grundzustandsenergie von $H_0 := H_1 + H_2$?
- b) Zeige, dass H_{WW} für $R \gg a_0$ näherungsweise durch den einfacheren Ausdruck

$$H_{VdW}(\vec{R}) = \frac{e^2}{R^3} \left(\vec{r_1} \cdot \vec{r_2} - 3 \frac{(\vec{r_1} \cdot \vec{R})(\vec{r_2} \cdot \vec{R})}{R^2} \right)$$

ersetzt werden kann. Wie kann dieser Ausdruck interpretiert werden?

c) Zeige, dass in 2. Ordnung Störungstheorie die Grundzustandsenergie gegeben ist durch

$$E_0(R) \approx -2E_{\rm Ry} \left(1 + \eta \left(\frac{a_0}{R}\right)^6\right)$$

mit einer positiven Konstante η und dass daher die Van der Waals Kraft attraktiv ist. Hier bezeichnet $E_{\rm Ry}=\frac{e^2}{2a_0}\approx 13.6{\rm eV}$ die Rydberg-Energie.

Aufgabe 1.2 Spinoren und Spin-Rotationen

Sei $|\chi\rangle$ der Zustand eines Elektrons ohne räumliche Freiheitsgrade. Spin-Rotationen werden beschrieben durch

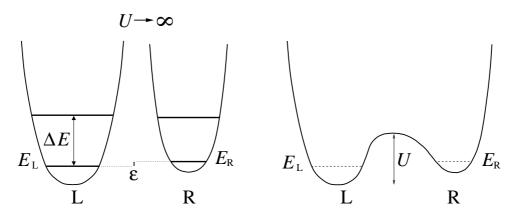
$$U_{\vec{\omega}} = e^{-i\vec{S}\cdot\vec{\omega}/\hbar} = \cos(\omega/2)I - i(\vec{e}\cdot\vec{\sigma})\sin(\omega/2), \tag{1}$$

wobei $\vec{\omega} = \omega \vec{e}$ und $|\vec{e}| = 1$.

- a) Drehe $|\uparrow\rangle$ um die y-Achse um $-\pi/2$ und zeige, dass der gedrehte Zustand ein Eigenzustand von S_x ist.
- b) Sei $|\chi\rangle$ ein Eigenzustand von S_y . Welche Drehung erzeugt $|\chi\rangle$ aus $|\downarrow\rangle$? Überprüfe das Resultat.
- c) Für welche Spinoren χ gilt bei vorgegebenem $\vec{e}, |\vec{e}| = 1 : \langle \vec{\sigma} \rangle_{\chi} = \vec{e}$?
- d) Sei \vec{e} vorgegeben und $\langle \vec{\sigma} \rangle_{\chi} = \vec{e}$. Wie gross ist die Wahrscheinlichkeit bei einer Messung der Observablen S_z im Zustand χ den Wert $\hbar/2$ zu finden?

Aufgabe 1.3 Doppeltopfpotential im zwei Niveau Grenzfall als Spin-System; Qubits

Betrachte ein allgemeines Doppeltopfpotential mit einer Barriere U zwischen den Töpfen. Für eine ∞ -hohe Energiebarriere, können wir die beiden Töpfe separat betrachten und erhalten den Grundzustand des rechten Topfes $|R\rangle$ mit Energie E_R und den Grundzustand des linken Topfes $|L\rangle$ mit Energie E_L . Wir wollen annehmen, dass $\varepsilon = E_L - E_R \ll \Delta E$ und dass bei genügend tiefen Temperaturen die angeregten Zustände der beiden (separierten) Töpfe vernachlässigbar sind. Die Niederenergie-Physik wird also effektiv in einem zwei dimensionalen Hilbertraum beschrieben. Solche Systeme werden auch als Qubits bezeichnet und sind aktuell von grossem Interesse.



a) Zeige, dass für eine endliche Barriere U (und bei geeigneter Wahl des Energienullpunktes) der effektive Hamilton-Operator durch

$$H = -\frac{1}{2} [\Delta \sigma_x + \varepsilon \sigma_z] \tag{2}$$

gegeben ist. Was bestimmt den Wert von Δ ? Finde die Eigenenergien und Eigenzustände von (2). Zeichne die Energie als Funktion von ε .

b) Zeige, dass bei geeigneter Wahl des Magnetfeldes \vec{B} der Spin-Hamiltonian

$$H = -\vec{\sigma} \cdot \vec{B} \tag{3}$$

äquivalent zu (2) ist. Wir können daher die Zustände $\{|L\rangle, |R\rangle\}$ mit $\{|\uparrow\rangle, |\downarrow\rangle\}$ identifizieren.

- c) (Phasenshifter eines Qubits). Für $\varepsilon = 0$ ist $|\psi\rangle = (|\uparrow\rangle + |\downarrow\rangle)/\sqrt{2}$ der Grundzustand. Sei nun $\Delta = 0$. Beschreibe die Dynamik $|\psi(t)\rangle$ erzeugt durch H mit $\varepsilon > 0$. In Experimenten mit Elektronenspins werden typischerweise Magnetfelder von 10^4 Gauss angelegt. Wie gross ist die zugehörige charakteristische Frequenz?
- d) (Amplitudenshifter eines Qubits). Sei nun $\varepsilon = 0$ und $|\phi\rangle = |\uparrow\rangle$. Beschreibe die Dynamik $|\phi(t)\rangle$ generiert durch H mit $\Delta > 0$.

A.R.