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In Part1 we learned about groups, their irreducible representations and how any repre-
sentation can be block-diagonalized on invariant sub-spaces called isotypical components.
In this part I'd like to introduce the Lie group SU(2) which is of central importance in
Quantum Mechanics as it allows one to to describe rotational transformations of a system.
With that it is possible to introduce the angular momentum operators as the generators
of its Lie-Algebra which provides invaluable understanding of how to determine the total
angular momentum of a system and for the meaning of the Clebsch Gordan coefficients.

At the end of this part I hope that the reader will have a better understanding of the
following questions:

e What is a Lie Group, what’s so special about it, and why is it that SU(2) is the
group of interest for Quantum Mechanics and not, say, SO(3)?

e What is a Lie Algebra, why are we interested in them and why is the angular mo-
mentum operator defined as the generator of the Lie-algebra su(2)?

e What are the irreducible representations for SU(2) and how does that help us to
determine the angular momentum of a Quantum Mechanical system?



1 Liegroups, Liealgebras & their relevance in QM

In order to make the formalism more tangible and easier to understand I will introduce the
concept of a Liegroup by discussing the group SO(3) which has particular relevance for a
lot of physical problems as it is the set of rotations in R3. The concepts of SO(3)’s Liealge-
bra so(3) will evolve rather naturally and show all the structure that even the beginner to
Quantummechanics will already have seen in the context of the angular momentum opera-
tor. That this is no coincidence will be apparent by looking at a very simple example of a
representation that describes rotations of the coordinate system for functions ¥ € L2(R3).

1.1 Liegroups and Liealgebras

Let’s begin by reminding ourselves of the definition of O(3) (relaer p.s):
0@3) = {AeMat(3,R): ATA=1} (1)
exercise: Show that (O(3),0) is well-defined as a group';

With this definition it is easy to see that any A € O(3) introduces an isometrie (a
map f : R® — R? for which d(z,y) = d(f(z), f(y) holds true for all x,y € R3): since

(Ax,y) = ZZ(ZJ Ajjzj) -y = Zj zj- (>, A]Tiyi) = (x, ATy) it follows that (Ax, Ay) =
(AT (Ax),y) 4€0@) (x,y) which implies that d(z,y)? = (x —y,x—y) = (A(x —y), A(x —
y)) = (A(x) — A(y), A(x) — A(y)) = d(A(x), A(y))?. Tt is interesting to see that apart
from translations all isometries are induced by orthogonal matrices (Felder p.43)

We can now introduce SO(3) as a subgroup of O(3) :
SO3) = {A€0(3):det(A) =1} (2)
exercise: Show that SO(3) is well-defined?

In the exercise to show that O(3) is well defined, we already saw that det(A) = %1 for
all A € O(3). Consequently any A € O(3) is either already in the subgroup SO(3) or (if
det(A) = —1) it can be written as a product A = (—=1)(—1)A = (—1)(—A) of the inversion
matrix —1 and a matrix —A4 € SO(3). Now we would like to show that all elements of
SO(3) can be interpreted as rotations.

'we need to show a) that O(3) contains 1 (obvious); b) that A € O(3) mandates A~ € O(3) (this can
be seen since 1 = det(1) = det(ATA) = det(AT) - det(A) = det(A)> = det(A4) #0 = A is invertible
and A7 = AT = (AHTA™ = (AT)TA™! = AA™! = 1) ¢) that A, B € O(3) mandates AB € O(3)
(this is straight forward since (AB)TAB = BTATAB =B 'A"'AB=1)

2again we need to show a) that SO(3) contains 1 (obvious); b) that A € SO(3) mandates A~* € SO(3)
(since det(A) # 0 == A is invertible and A™" = AT = det(A™!) = det(AT) = det(A) = 1) c) that
A, B € SO(3) mandates AB € SO(3) (this is straight forward since det(AB) = det(A) - det(B) = 1)



It is a simple Corrolary of the the Normal-Form Theorem in linear Algebra (Gerd Fischer,
“Lineare Algebra”, page 292) that any matrix A € SO(3) can be written as:

=:R(n,0)
cosff —sinf 0
A = O sinf cosf 0 |O!' with O e SO(3) (3)
0 0 1
::R(eg,e)

It is obvious that the matrix R(es,f) corresponds to a rotation around es by the angle ¢
and since A is equivalent to R(es,f) with a new orthonormal basis B = (Oej, Oez, Oes) it
corresponds to a rotation around n := Oes.

Up to this point we have learned:

e that all A € O(3) induce canonically isometries on R3;

e that all A € O(3) are already in SO(3) themselves or can be written as a product of
an inversion and an element of SO(3);

e that any A € SO(3) can be interpreted as a rotation R(n,#) by an angle 6 around
the axis n.

This is already a lot but something quite obvious is missing: when we look at the function
R(es,:) : R — SO(3) it is apparent that each matrix-element R(es,-);; : R — R is
continously differentiable and even an element of C°°(R). But in order to interpret R(es, -)
as a differentiable function we need a norm (or at least a metric) on SO(3). This norm
can be defined canonically by identifying Mat(n, K) with K** (here K = R or C):

®: Mat(n,K) — K" (4)
X — (X11,X12,...,Xnn) (5)

Since for any x € K the norm is given by |z|| = /> |z;|? it makes sense to define
| X = /tr(X*X) as the norm of a matrix X € Mat(n, K).

exercise: a) show that this definition of the norm coincides with the norm on K" in effect
show that || X | = ||®(X)]||?; b) show the validity of | XY|| < || X|||Y]| (called the Schwarz
inequality)*

With this norm and everything else we have learned so far it is obvious ...

(XX = (ﬁngj = Z%ﬁikaj = Y, XeiXe; = tr(X*X) Def- (X X))y =
2ok XkiXn = 20 5 [ Xnal " = [|2(X)|

“the norm squared of the matrix XY is the sum of the norm squared of its elements: | XY|

D (XY)]* = il 2k XixYi;|%; if we now define u,v € K™ for fixed i and j as ux := X and
vy, := Yi; then we can use the Schwarz inequality |{u, v)|? < ||ul|?||v]|? to obtain the assertion;

|2 see:a)



(a) ... that R(es, ) is continously differentiable on (Mat(n,K), || - ||);

(b) ... that R(e3,0) = 1;

(c) ... that R(es3,0 + ¢) = R(e3,0)R(es, ¢);

A map with such characteristics is more generally called a one parameter group.

Now it is easy to make a Taylor expansion of R(es, ) € C*°(Mat(n,K)) which yields

0 -1 0 -1 0 0
Rles, )= 1 +6-[ 1 0 0 | +=6? 0 -1 0 | + (6)
R(es,0) 0 0 O 0 0 0
OpR(e3,0) 333&:3,0)
exercise: a) Show that for n > 1 the dervatives are given by: 8g‘+2R(e3,0) = —0yR(e3,0).

—110
b) Show that for I3 := JpR(es,0) the product is given by Isls = ( 0 To >
From the previous exercise it is apparent that the Taylor expansion of R(es,-) in qu.6
coincides with the definition of the exponential function

R(es,0) = exp(013) (7)

where I3 is called the infinitesimal generator of the one-parameter group. On a practical
level one could wonder now if exp(X) exists for all X € Mat(n,K) (i.e. if it always
converges) and if it handles well (i.e. if it respects the “normal” operation-rules which we
are accustomed to from X € R. On a more fundamental level we could wonder if exp(6.X)
is always a one-parameter group and if all parameter groups are of that form. As it turns
out the answer to all those questions is positive and can be found in Felder p.59 - p.61°.

Simply by knowing I3 and rotating the axises in a cyclic fashion, it is easy to see that the
infinitesimal generators for the rotations R(e1, 0), R(ez, 6) and R(es, ) are as follows:
00 O 0 0 -1
LH=]100 -1 I, = 0
01

1 0 0
0 0 Is=( 1 0 0 (8)

0 -1 0 0 0 0 O
One could wonder now if any rotation R(n, ) can be written as exp(6.X) and, if so, how
exactly the infinitesimal generator X looks like. The answer to the first question is positive

SFor X,Y € Mat(n,K) it is possible to show the following: a) exp(—X) = (exp X)~! (particularly X is
invertible); b) exp(X*) = (exp(X))* (particularly exp(X7T) = (exp(X))T); ¢) Aexp(X)A™! = exp(AXA™")
d) det(exp(X)) = exp(tr(X)) and e) exp(X)exp(Y) =exp(X + V) if XY =Y X



and the expression for X;, turns out to be surprisingly simple:

R(n,0) =exp(6 > nil;) (9)
X

exercise: Show that the above relation is true by showing that a) exp(0Xy)7 exp(6X,) = 1
which implies trivially that exp(#Xy,) is an orthogonal matrix (i.e. an element of O(3))%; b)
det(exp(#Xyn)) = 1 which implies again trivially that exp(6.Xy) is in SO(3) and therefore a
rotation”; ¢) Xyn = 0 which implies that exp(0Xyn)n = n and therefore that n is the axis
of rotation®; d) that 6 is indeed the angle of roation®

This is an important result not only on a practical level but also more fundamentally. It
means that the set so(3) := {X € Mat(n,K) : exp(6X) € SO(3) for all § € R} has the
structure of a real vectorspace V spanned by Ii, Is and I3. Furthermore it is easy to see
that the operation

[,]]: so(3) xso(3) — so0(3) (10)
(A,B) — [A,B]:= AB— BA (11)

is well defined and adds more structure to V' with the following properties
(i) ANX +pY,Z) = NX, Z] + pulY, Z] for \,pe K
(i) [X,Y] = —[Y, X]

(iii) [[X,Y],Z] +[[Z, X], Y]+ [[Y, Z], X] = 0 (called Jacobi identity)

exercise: Show that [-,-] is well defined by verifying that [I;, I;] = €,y and that further-
more properties (i)-(iii) are correct.

It turns out that the structure which we just discovered for so(3) is more general: Any real
or complex vector space g equipped with a “Lie-bracket” [,:] : ¢ x ¢ — ¢ that has the
properties (i)-(iii) is called a Lie-Algebra. A Homomorphism of a Lie-algebra therefore
not only respects addition (i.e. is not only linear) but also respects the Lie-bracket.

Furthermore it is possible to show that for any closed!® subgroup of GL(n,K) (referred to
more generally as (Matrix-) Lie-group) the set

g = Lie(G) = {X € Mat(n,K) : exp(6X) € G forall § € R} (12)

bexp(0Xn)" exp(0Xn) = exp(0XL + 0Xn) = exp(0(—Xn) + 0Xn) = exp(0) = 1 since I] = —1I,

"det(exp(0Xn)) = exp(tr(§Xn)) = 1 since tr(I;) = 0 for all j;

8to show that Xan = 0 one simply has to use the definition for X, = > n;l; and the definition for I;;
the rest is evident

%et’s look at n = (1,0,0); then by simple calculation and using the powerseries expression for exp, sin
and cos one sees that R(n;0)es = —sin(f)ez + cos(0)es;

Oclosed with respect to the topology introduced by the metric;




has the structure of a Lie-algebra and is called the Lie-algebra of the Lie-group G.

exercise: Show that for the following examples are correct!! (Felder page 62):

gl(n,K) £ Mat(n,K) (13)
u(n) 2 {X € Mat(n,C) : X*=-X} (14)

su(n) = {X €Mat(n,C): X*=—-X trX =0} (15)

o(n) = so(n) 4 {X e Mat(n,C): XT =-X} (16)

This already shows a very important aspect of Lie-Algebras: while it can be true that
exp(g) = G it doesn’t have to be (as in the case of O(3) where I can only reach the
Zusammenhangskomponente of 1). In general I can only reconstruct the vicinity of 1.

1.2 Representations of Liegroups

In the previous sections we introduced the definition of a Liegroup and its Liealgebra
by discussing SO(3) and its connection to so(3). It is important to see that the special
feature about a Liegroup is the fact that its group-structure is compatible with its topology
(induced by the norm), a fact that becomes apparent when looking at the one parameter
groups that let us describe rotations about an axis. In this context it is only natural that
we demand of any representation p of a Liegroup (G, o) on a vectorspace V'

p: G — GL(V) (17)

to not only respect the group-structure (i.e. to be a Homomorphism) but also to respect
the group’s topology (i.e. to be continous). This will allow us now to show that the image
U = p(¢y) € GL(V) of a one-parameter group ¢; with p is again a one-parameter group.
This is straight forward to see:

(i) Yegs = Ytbs follows directly from ¢ being a one parameter group and p being a Lie
group homomorphism.

(ii) 9o =1 follows similarly.

(iii) ¢ is continous because p is. If we now assume for a moment that 1, exists'? then

d _ _ .
S = Jim Pyt 0y g (18)

ad a) for any X € Mat(n,K) we know that det(exp(6X)) = exp(d tr(X)) # 0 = exp(6X) is invertible
and therefore in GL(n,K); ad b) for any X € u(n) we know by definition that (exp(6X))* exp(6X) = 1,
using (exp(6X))* = (exp(X*)) and the product-rule, derivation ;| _ yields X* + X = 0; ad c) for
any X € su(n) we know furthermore (also by definition) that det(exp(6X)) = 1 = exp(f tr(X)) =
1 = tr(X) =0 ad d) note that for X € Mat(n,R) the condition X* = —X automatically implies that
all diagonal elements of X vanish (X;; = 0)whichmeansthattr(X)=0 and therefore so(3) = o(3)

2for a detailed proof see Felder p.69



and therefore 1, is even continouly differentiable.

The pervious considerations allow us now to seek a definition of the representation p*
of the Liealgebra (Lie(G),o) that is sensible (i.e. that makes the following diagram
commutative):

G
expT exp (19)
Lie(G) 7 gl(V)

To this end let us consider ¢y = p(exp(tX)) with ¢t € R and X € Lie(G). From the pervious
paragraph we know that v, is a one-parameter group in GL(V) and from the previous

section that every one-parameter group has the form exp(tY) with Y € Lie(GL(V)) =
gl(V):

plexp(tX)) = exp(tY) (20)
- jtt_omexp(tX)) - jtt_o exp(tY) (21)
=Y

Inserting eq.(21) into eq.(20) yields:

plexp(tx) = exp (¢ 3| plen(e))] ) (22)

t=0
This is the motivation to define

d

= q|  plexp(tX) (23)

t=0

pH(X)

since it renders diagram (19) commutative! Fortunately this definition also respects the
Lie algebra’s structure such that

a) p*is linear: p*(AX + uY) = A p*(X) + up*(Y)13;
b) p* preserves the Lie-bracket: p*([X,Y]) = [p*(X), p*(Y)]'4;
In general we shall demand that any representation of a Lie algebra have these properties.

This brings us to the main theorem of this section: that a representation p on a vector
space V of a simply connected group is irreducibel if and only if p* is irreducibel’®.

13Felder, page 70
HFelder, page 70
15 Felder page 69 and 70



Proof: Let W C V be a closed subvectorspace not equal to {0} and 74 : R — W and ; a
one-parameter group on W. This means that % € W, too, and especially %(t =0). Let
now p be invariant on W and v; := p(exp(tX))(w) for w € W arbitrary but fixed. Then it

is obvious that

P (X)

plexp(tX)) (24)
N —

Tt

dt],_o

has W as an invariant subspace, too. On the other hand, if p* is invariant on W (i.e.
p*(X)(w) € W for all w € W and for all X in the group’s Liealgebra). Then

plexp(tX)) (w) 2 exp(tp*(X))(w) = Zf!p*w(w) ew (25)

J

So a non-trivial invariant subspace W of p is also one of p* and vice versa. In order to infer
the irreducibility of p* from p (and vice versa) such a subspace W also needs to be minimal
(i.e. it may not contain a smaller, non-trivial invariant subspace W C W). But that is
easy to see: let us assume that p is irreducible on W but p* is not (i.e. W is minimal for p
but not minimal for p*). Then there is a non-trivial subvector space 1174 C W on which p*
is irreducible. Because of our previous considerations, W would also be invariant under 0
which would be a contradiction to our initial assumption that p is irreducible on W. With
that the theorem is proven.

1.3 Practical example of a Liegroup representation in QM

The use of the above theorem becomes quickly apparant when looking at the simple example

of describing the rotation of coordinates = — & = Rz, R € SO(3) for a wavefunction
U € L2(R3). This can be expressed most conveniently with a representation p:

p: SO(3) — GL(L*R?)) (26)

R +—— pp with (pr¥)(z) := V(R 'z) (27)

exercise: show that this definition is indeed a homomorphism i.e. that pp,z = prop R;lﬁ

If we now look at p* :  so(3) — gl(L?(R?)) we can make an interesting connection to the

16t just an exercise in writing it out; the 2 things important to remember/ see are a) that

(prlpa(W))@) = (pr(W(ET))e) = W(E (R 2) and b) (ppa¥)(a) = ¥R (R '2)) since

(RR)™' =R 'R~



angular momentum operator L in Quantum mechanics:

N Def p* d
an\I/(X) = @ {pexp(aXn)\II(X)} (28)
a=0
befp 4 (0 (exp(—aXan)x)} (29)
do a=0
L (VW) o (exp(—aXn) (= Xn)X) g 30

(30)

= —(V¥) o (Xnx) (31)
~(V¥)o (nAx) (32)
(33)

(34)

£ —no (x A V) 33
' h
£ _%HO;(XAV)\I’ 34
(Le,Ly,Lz)
This means in particular that

L; = ihp, (35)

which means in turn that the Lie-bracket is passed on (Straumann page 144 and 145):
[Li, L] = ih Y _ €iuL (36)

k

1.4 Finding the angular momentum using group theory
In the last two subsections we had two important results:

(a) The angular momentum operators L; are induced through the representation p by the
relation L; = ih p],.

(b) For a continous group like SO(3) the representation p is irreducible if and only if p* is
irreducible.

This will allow us now to show that the Isotypical components Wpr = Vle D V;k 6. C
L*(R3) of p are already the Eigen-spaces Eig(L?,\) of L? := 3", Ly (here A denotes the
eigen-value). Since we have already developed a lot of tools to find such invariant subspaces
of a representation, this will be very helpful.

Let’s start by having a look at so(3) = {X € Mat(n,C) : X7 = —X} and its generators
I.. It takes a bit of calculation!” to show that:

D Li. 0 =0 (37)

7Since any g € so(3) can be expressed as a linear combination of the infinitesimal generators Iy,
and since furthermore p* and the Liebracket are linear, it suffices to show that [> Li,p?k] = 0; and




If we now consider the invariant subspace V5, € L*(R*) on which p|y . Is irreducible (and
D
equivalent to the irreducible representation D* of SO(3)) then we know that p*\vikis also
D

irreducible and it follows straight from Schur’s Lemma!® that L? = X - id. Using a result
that we will proof further down (section 4.1) we can even say that L? = k(k + 1) - id and
hence Wy C Eig(L2, k(k + 1)).

We can see that Eig(L?, k(k+ 1)) € Wy by contradiction: lets pick a v # 0 with L2(v) =
k(k+1)v which we assume to be in a different isotypical component Wi with &k # k. Since
we know from above that W,; C Eig(L?, k(k+1)) our assumption leads to a contradiction.
We can therefore conclude that there is no v # 0 in Eig(L?, k(k+1)) which is in an isotypical
component W; with k # k.

since pj, = —+Ly it is actually sufficient to show that [} L7, L;] = 0 for j = 1,2,3; Let us do the
calculation for j=1: [S. L%, I1] = [L3,L1] + [L3,L1] + [L3,L1] = 0+ (L3L1 — L1L3) + third term =
0+ [(LQ(Lle) — LQ(LlLQ)) =+ ((L2L1)L2 — (Lng)Lz)] + third term = 0 + (LQ[Lz, Ll} + [L27L1]L2) +
thlI‘d term = 0 — (L2L3 =+ L3L2) =+ (L3L2 + L2L3) =0

®note that p} (Vi) C Vj, for all g € so(3) and therefore especially for g = > I7; hence V), is an
invariant subspace for both, p* and L? and Schur’s Lemma is applicable

10



2 Formalising symmetry considerations

Symmetry is a word that is commonly used in our every-day language and we all have
some kind of an intuitive notion of what we think it means leaving the door wide open
for misunderstandings when referring to it in a more formal, scientific context. This is
especially true in the context of Quantum Mechnaics where physical objects are described
(rather counter intuitively) by rays in a separable Hilbertspace and observables by self-
adjoint operators. In order to come up with a sensible definition for the word “symmetry”
we need to ask the question what we actually want from a symmetry and we need to find
a way to express it mathematically.

In some cases it might seem straight forward: if, for example, the vectorspace for describing
our quantum-mechanical system is L?(R?) and the potential is rotation invariant (e.g.
1/r), then it might seem obvious that the representation p : SO(3) — GL(L?*(R?))
with pr¥(z) := W(R™'z) which describes rotations around the origin is also a symmetry
transformations of this system (even though we haven’t really specified what we mean by
symmetry yet). But already in this simple example of a SO(3) representation it is easy to
show that it is not possible to describe a particle with half-integer spin like the electron?.
For the latter the proper Hilbert-space is L? &) C? and the group of choice for describing

rotations is SU(2). Here it might not be apparent right away how to express a rotation.

One could also ask if a given representation p really describes all the symmetries that the
system has or if there are maybe more that are hidden or just not that obvious. This is a
valid question because even in classical mechanics the 1/r-potential-problem has a SU(4)
rather than just SO(3) symmetry reflecting that not only the angular momentum but also
of the Runge-Lenz-vector is conserved?’,

All this makes it apparent that it is necessary to formalize symmetry-considerations which
shall be done in the following: first we quickly review some basic terms like state, observable
and probability measure. Then we will discuss Automorphisms in general and finally define
a symmetry as a special case of an Automorphism.

2.1 States, observables and probability measure

In Quantum mechanics the pure state of a system is given by a ray in a separable Hilbert
Space H which is an equivalence class [¥] of vectors in H that only differ by a phase factor:
U~d < U =¢?. Its temporal evolution is given by

B(t) = exp (—;Ht> W, (38)

9For more information one can read up on the Stern-Gerlach experiment.
20Tn quantum mechanics we also have a SU(4) symmetry resulting in a higher degeneracy of the energy
levels than would be the case if it was just a SO(3) symmetry

11



where H is the Hamilton operator of the system. Obviously ¥(¢) solves the Schroedinger
equation and it is straight forward to see that U(t) = exp (—%H t) is a unitary operator?!.

Once we know Wy and H we can answer the question what the probability is to measure
a certain observable A in a set A C R by calculating the probability measure

Wigy(A) == (¥, E4A)Y) (39)

where E4(A) is the projection valued measure of the self-adjoint operator A%2. In order to
make this expression more tangible let us look at the examples of an harmonic oscillator
where it is easy to write down W[‘fl‘,](A) explicitly in a manner that is easily recognized.
The harmonic oscillator’s Hamilton operator has a discrete spectrum of Eigen-values and
can therefore be written as H = Y, A\;|v;)(v;| in Dirac notation. The probability W[g](A)
to measure its energy in the interval A C R is given by:

Wig)(d) = > (T ) (u| ) (40)
i with \;EA EH(A)

= Z loi)?> where U = Z%’\%‘) (41)

which is the expression we are used to from introductory Quantum mechanics.

2.2 Automorphisms

When we describe a quantum mechanical system by specifying its state [¥] and its observ-
ables A, B, C, ... it is only natural to ask what kind of maps

a:[U] — [V] (42)
A — A (43)

will leave the probability measures (and that’s the only thing relevant for comparing theory
and experiment) unmodified:

al(A
Wik (&) = Wa (&) (44)

An surjective a with this property is called an Automorphism and it is easy to see that
any unitary operator U will induce such an Automorphism:

Wi () = (U UEANA)UTIUY) (45)
=  (U'UV,EAA)D) (46)
U, BAA)) = Wi (A) (47)

% i * i * i * H=H* —
HUt)" = [exp (—£Ht)]" =exp (—tHt) =exp (tH*t) "= U(t)™"
22 According to the spectral theorem such a measure exists for every self-adjoint operator A and E4 (R) =
id, for more details see the book by Eduard Prugovecki “Quantum Mechanics in Hilbert-Spaces”

12



But it is also possible to show that any Automorphism can be induced by a unitary operator
which is unique safe a phase factor. This means that if a([¥]) = [UV] = [UV] then it follows
that U = U with 6 € R.

2.3 Symmetries

With the general remarks of the previous two subsections in mind we can now not only
define what a symmetry is, but also see the sense behind its definition: let p be the repre-
sentation of a group G onto the set of Automorphisms (i.e. each py is an Automorphism
and pg, © g, = Pgiogs)- G is called a symmetry-group if each p, commutes with the
one-parameter group U (t):

[pg, U(t)] =0 forallged (48)

where U(t) = exp(—+Ht) describes the time-evolution of our Quantum-mechanical system.
The reason for this definition becomes apparent when looking at it a bit closer: since G is

a Lie Group we can write each element g € G as g = exp(sX) for some parameter s € R
and X € Lie(G):

d
[pexp(sX)> U(t)] =0 H ’ & 0 (49)

=[x, U@)] = 0 (50)

This allows us now to show for any operator A := p%:

Wiw = (UQVEUMY) (51)
PO (yw, U (1) EA W) (52)

= (U@)*U(t)W, EAD) (53)

VO mitey g pAgy = g (54)

which means that our condition for a symmetry entails the existence of an observable A
for which the probability measure is conserved.

However, since any Automorphism is induced by a unitary map that is only unique safe a
phase-factor, the symmetry of a group G does not necessarily entail the existence of a linear
representation but only the existence of a something called a projective representation
p with

Pg1 © Pgz = w(91,92) Pgrogs  With |w(g1, g2)] =1 (55)

a circumstance which is rather annoying since the theory we’ve developed so far for
(Lie)groups and their representation is not applicable. It’s therefore only natural to ask
if there isn’t some kind of a trick we could use to get rid of the phases w and transform
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the projective representation p into something more manageable like a continuous, unitary
representation for which we have already developed a lot of tools. The answer to that
question is positive (with certain limitations®?): for a large class of groups (especially for
SO(3)) it is possible to choose a neighborhood G of the unit element e € G such that
Pl co 18 a unitary and continuous representation. But if G is not simply connected (like
e.g. SO(3)) than we cannot expect to be able to choose the phase-factor w = 1 globally.
Instead we have to go from G to a ‘larger’ group G which is simply connected and is called
the universal covering group. G and G are connected via a continuous, surjective map

G — G (56)

which is even a differentiable group-homomorphism for the case that G is a connected
Liegroup (like SO(3)). The great thing about the universal covering group is that the
locally via 7 induced representation p o w can be expanded uniquely to all of G leaving us
with the situation explained in the following diagram:

G

™

el

While p and 7 are homomorphisms, p is only a projective representation (represented as
a dotted line). In consequence the above diagram is only commutative modulo a phase
factor A

p(A) = A~ p(m(A)) (57)
with |[A| = 1. This means in particular that if A € Kernel{r}, then p(4) = X 1.
While all this may sound rather abstract and intangible, it has very real consequences for
Quantum-mechanics. It allows us to “lift” the projective representations of SO(3) to con-

tinuous, unitary representations of its universal covering group SU (2) thereby introducing
half integer spins.

2.4 SU(2) - the universal covering group of SO(3)

From the previous paragraph it is apparent that in order to express rotational symmetry
in Quantum mechanics we have to go from SO(3) to its universal covering group. The

2see Straumann page 148
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latter turns out to be SU(2):
SU(2):={AcU(2):det(A) =1} (58)

where U(2) := {A € GL(2,C) : A*A = 1}. While the proof for this assertion is beyond the
scope of this script, it is important to at least know and understand how 7 connects SO(3)
and SU(2). This shall be done in the following paragraphs step by step by 1) exploring
SU(2); 2) exploring its Lie-Algebra su(2); 3) writing down 7y in a commutative diagram;

2.4.1 A few helpful facts about SU(2)

exercise: show for A = < f; g > € SU(2) the following: 2*

a) that the inverse exists and has the form A~ = < _57 ;ﬁ )5

b) that A can be simplified to A = < _OCB g );

c) that there is a bijection between SU(2) and the unit-sphere S2(C?) in C?;

2.4.2 A few helpful facts about su(2)

Lets start by quickly reiterating the definition of su(2):

su(2) = {X eMat(2,C): X*=-X and trX =0} (59)

This definition implies that any X € su(2) has the form X = ( _;i v x_—:;y > with
x,y,z € R. This, of course, implies that su(2) is a 3 dimensional vector-space. If we now
define the following matrices:

GG (W) ) e

/ /

1 o3 [op) o1

then it is again straight forward to see that the Pauli Spin matrices o1, 02 and o3 form
a basis for su(2).

d

( _67 7023 ) = (ad —yB)1. Since det(A) = ad —vB = 1 it shows the assertion; ad b) Since the elements
of U(2) satisfy (by definition) A* = A" the expression for A is obvious with a); ad ¢) since the elements
of SU(2) satisfy (by definition) det(A) = 1 the bijection is obvious;

2ad a) det(A) #0 = A~ exists; for simple matrix multiplication shows that Ao A™! = ( a B ) o
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2.4.3 The covering map w

We are now in a position to define 7

7 :SU(2) — SO(3) (61)
A — TA (62)

point-wise with the following cummutative diagram:

Ada(X):=AXA1!

FTERP<— ¢ —> X =707 € su(2
A

JeER  <— ¢ —>Y =:jjod € su(2

Before we show now that 7 is indeed a homomorphism with Kernel(w) = {£1}, it is
necessary to have a closer look at the commutative diagram and show that is actually well
defined.

Proof for m being well defined: In order to show that 7 is well defined, let’s start by
having a look at ¢ : R® — su(2). Since the Pauli spin-matrices o; form a basis of su(2), it
is trivial to see that ¢ is an isomorphism, assigning each X € su(2) its coordinates # € R3
and vice versa. To see that ¢ is unitary show as an exercise that ...

i) ... (X,Y) = 1tr(X*Y) is a scalar product on the R vector-space su(2) i.e. that it is
symmetric, bilinear and positive-definite?3;

ii) ... ¢ conserves the scalar product i.e. that (Z,7) = (¢(Z), #(¥))?%;

In order to show that for any A € SU(2) the map Ada : su(2) — su(2) is indeed an
orthogonal endomorphism we need to work a bit harder and verify ...

i) ... that Ady is indeed an endomorphism (i.e. that Ada(X) = AXA™! € su(2)) by

showing that AX A~ is traceless and anti-hermitian:

traceless: tr(AX A1) cyclic tr(ALAX) = tr(X) Xesu(2) 0;

Zsymmetric: follows straight from trace being cyclic (cyc.) and X,Y being anti-hermitian (a.-h.):
(X,Y) = 1tr(X*Y) = Lr(Y X™) azh- 1tr((-Y*)(=X)) = (Y, X) ; bilinear: follows straight forward
from trace being linear i.e. tr(A 4+ B) = tr(A) + tr(B) and any coefficients © € R; positive definite:
(X, X) 2 Ler(XX) S, S (X X)) = 3, S (X kaXes) = X, [ X2 > 0and = 0 <= X =0;

26in order to show that ¢ conserves the scalar product we only need to show it for the image of an
orthonormal base such as {e;} and {¢(e;) = o;}; since (e;,e;) = (04, 0;) = d;; we are done;
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anti hermitian: a) preliminary step: (AB)* = B*A* because ((AB)*);; = (ET)U =

(AB)ji = (AB)j; = Y1 AjxBri = >, Ay;Bj, = (B*A")ij;  b) because of a) we
can now see that (ABC)* = C*B*A* because (ABC)* = ((AB)C)* = C*(AB)* =
C*B*A*; c¢) because of b) and since by definition A* = A™! and X* = —X we can
finally conclude that (AXA1)* = A" X*A* = A (—X)A* = —(AX A*)

ii) ... that Ada(-) is linear and orthogonal:
linear: Ads(X +Y)=AX +Y)A ' = AXA '+ AY A" = Ada(X) + Ada(Y)
orthogonal:

(Ada(X),AdA(Y)) = tr((AXA™H*AY A™Y) by definition
= tr((A)*X*A*AY A7) since(ABC)* = C*B*A*
= tr(AN(ATHY* X*A*AY) using tr(-) cyclic and A* = A}
————— ~—

1 1
= tr(X*Y) = (X,Y)

Proof for m being the universal covering group:

Let’s start by showing that 7 is linear (i.e. that mqp = w4 o 7). With the commutative
diagram shown at the beginning of this subsection it is easy to see that 7 is linear if and
only if Ad : SU(2) — End(su(2)) is linear which is the case as can be seen in the
following;:

Adap(X) = (AB)X(AB)™' = A(BXB H)A™! = Ads(Adp(X)) (63)

Having shown that 7 is indeed linear, we would now like to show that Kernel(n) = {£1}.
Again the commutative diagram becomes helpful as it is apparent that Kernel(r) =
Kernel{Ad}. Therefore we are looking for all matrices A € SU(2) for which Ady = id
and consequently for all A € SU(2) for which AXA™! = X for any X € su(2). Obviously
this is the case for A = +1. The question is now if A = +1 is not only a sufficient but also
a necessary condition. Let us therefore consider

1 0 a B 1 0 a —f
(0 5) - (5a)Ga)GT) o
—_———
Xesu(2) AESU(2) X Ar—A-1
aP =187 208 >
("L e e (%)
AXA-1
— |a?— %=1 and aB=0 (66)
= B=0 and |a?>=1 (67)

17



This last line shows that A = £1 is not only sufficient but also necessary for Ads = id
and therefore Kernel(7w) = { £ 1}.

The fact that 7 is surjective shall only be scetched here:

cos@/2  —isinf/2
—isinf/2  cosf/2
su(2) — su(2) can be expressed in the basis {0;}i=1 23 as:

e first show that for A = < > € SU(2) the map Ada(-) :

1 0 0
Ada()|e; = 0 cosf® —sinf | = R(e1,0) (68)
0 sinf cosé

—ig)2
e next show that for B = < ¢ 0 6_?¢/2 ) € SU(2) the map Ada(-) : su(2) —

su(2) can be expressed in the basis {0;}i=1,2,3 as:

cos¢p —sing 0
Adp(-)ls; = | sing cos¢p 0 | = R(es, ) (69)
0 0 1

e finally we can use a theorem from linear Algebra (Felder page 45) that any R € SO(3)
can be expressed as:
R = R(es, ¢)R(e1,0)R(e3, ) (70)

2.5 SU(2) and the angular momentum operator Jj

In the previous section we saw for a simple example (namely for a QM system described in
a Hilbertspace H = L?(R3)) that if we define the angular momentum operator L, through
the representation p* induced by a rotation as

Ly = ihp" (1) (71)

then Lj coincides with the operator one would obtain by simply using the correspondence
principle. This is already a strong indication that such a definition through the represen-
tation on the Lie-Algebra is sensible. With the tools obtained in this chapter we would
like to give another reason for this definition:

Let us consider a rotation invariant QM system (such as an electron, atom, nucleus and the
like) described by a ray in a separable Hilbertspace H. We know now that the symmetry
of this system is described by a projective representation p : SO(3) — GL(H) that can
be "lifted“ to a continuous, unitary representation p : SU(2) — GL(H). Because it is a
symmetry, we know that p commutes with the time evolution operator U (t)

[5(A),U(t)] =0 foralltc R and A € SU(2) (72)
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where U(t) := exp — £ Ht. If we now generalize our considerations from before and define
the angular momentum operator as

Ty o= ih 5 (1) (73)

then it follows immediately from equ. 72 that [Ji, U(t)] = 0 and hence that Jj is an integral
of motion®”. This is exactly what we would expect from classical mechanics and a further
indication that our Definition in eq. 73 is sound.

?Tsee Straumann page 129 and Wikipedia
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3 Tensorproductspaces for elementary particles and their
angular momentum

As it has been mentioned already earlier, the Stern-Gerlach experiment suggests that the
electron carries some kind of an intrinsic angular momentum which cannot be explained by
describing it as a ray [¥] € L?(R3). We therefore have to find a more adequate Hilbertspace
to describe our system like
\111 (X)
Ve = | (74)
U (x)

This “guess” is not only straight forward but also quite natural considering the fact that
classical fields are not described as scalar functions neither (Straumann page 66 bottom).
For practical reasons that will become apparent shortly, it is useful to make the following
identification of Vectorspaces (via the canonical Isomorphism):

L*(R3) x ... x L*(R®) ~ L*(R*) @ C" (75)

n times

Once we understand these tensor-product spaces and how representations operate on them,
it will be straight forward to define our angular momentum operator J for such systems
explicitly.

3.1 Tensorproducts of Vectorspaces

The tensor product U ® V of two K-vector spaces Y and V (K = R or K = C) can be
introduced in different ways that vary in complexity. Here I would like to follow a simple
approach (taken from Felder page 87) that defines the tensor product as a quotient set (the
set of equivalence classes) on the linear envelope £ of the Cartesian product U x V.

Let L(U x V) be the set of all finite linear combinations of vector-pairs (u;,v;) € U x V:
LU x V)= {Z ai(ui,vi): n€Nand ; € K} (76)
i=1

On this set an equivalence relation £ shall be defined:
(1) (w1 4 ug,v) ~ (u1,v) + (u2,v)
(i) (w,v1 +v2) ~ (u,v1) + (u,v2)

(iii) Au,v) ~ (Au,v) ~ (u, \v)
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. R. . . :
exercise: Show that ~ is indeed an equivalence relation.

The equivalence classes [(v, w)] are commonly denoted as v®@w and the set of all equivalence
classes is the tensor-product

UV =LU x V)& (77)
which has the following properties:

(i) All elements of U ® V are either pure tensors u ® v or linear combinations of pure
tensors u1 Q v1 + ... + up Q@ vy,

(ii) Let {p;}ier and {v;}jes be a basis in U and V respectively. Then {j; @ v;}(; jyerx.s
is a basisin @ V

(iii) The definition of the equivalence relation L entails some simple calculation rules:

e (U1 +u)RUV=u1 Qv + ug v
e u®(U+v)=uRVv + uuUy
o \Nu®v)=(A\u) ®v=u® (Av) where X is an element of the field K

The proof for these properties can be found in Felder page 87.

If we now consider two operators A € Hom(U/) and B € Hom(V) then the tensor-product
A® B onlU ®YV is defined canonically as:

(A® B)(u®wv) := (Au) ® (Bv) (78)

To make all this a bit more tangible and in order to gain some experience with these new
definitions, let us consider the simple example in which ¢/ = R? with Basis By, = {e1, e2,e3}
and V = R? with basis By = {f1, f2}. For U ® V basis’ By gy we have in theory 6! = 720
options but 2 of them are most natural:

e option1: Bygy ={e1 ® fi,e2 ® f1,e3 @ f1,e1 @ fa,ea ® fa,e3® fo}
e option2: Bygy = {61 ® f1,e1 ® fa, €9 ®f1,62®f2,€3®f1,63®f2}

Choosing option 1, it is straight forward to see now that A ® id and id ® B have the form:

A 0 b1l bi21
A®id = while  id®@ B = (79)
0 A bo11 boo1
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exercise By applying A ® B on each element of the basis Byg)y and writing out the result
in Matrix notation, show that

A®B = A®id - id® B (80)

3.2 Representations on Tensorproducts

Having introduced the tensor-product space U ® V it is now important to understand, how
a representation and its derivative work on such a space. To this end let us assume that
the representations p and pY are given

M G — GLU) (81)
pY: G — GL(V) (82)
We can now sensibly define the tensorproduct of those two representations as follows:
Mep’: GxG — GLUSYV) (83)
(9,9) = (@ )gg =1y ©pp (84)

This will become very useful for describing rotations in Quantum Mechanics and allow
us to define the angular momentum operator as J;, = ih(p¥ ® pY)*. Before we do the
calculation, let us remind ourselves of the commutative diagram

axa 2 qLuev)

(expt) ex(t) | [ xpeennie) (85)
GOG — gdUDY)
(PM@pY)*

which shows how (p ® p¥)* is operating (where G denotes the Liegroup of G).

) d
MeMxy = 3 . (pffxp@X) ® pl}xp(ty)) (86)
eq.80 d u %
o 3 o t0a)
_ (F) o1 + 16 (), (53)

It is important to note at this point that the above calculation is still valid if we set Y = X.
For that case we are only looking at the diagonal elements (g,g) € G x G (which is the
way that G can be embedded in G x GG) and write the tensor product as ®;:

MeipV: G — GLU®RYV) (89)
g = (@i g =r @ry (90)
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3.3 The angular Momentum and Spin Operator

With these tools we now only have to make a good “guess” on the Hilbertspace H the
electron will be living in, in oder to define its angular momentum operator Jg. So far we
only argued that H will have the form H = L?(R3) ® C* without specifying n.

This good guess turns out to be
H = L*(R?) ® C? (91)

and there are good reasons to choose n = 2 that are connected to the irreducible repre-
sentations of SU(2) which however we haven’t studied so far. So for now I have to ask
the reader to take this choice in good faith assuring him or her that it will become obvi-
ous once we study SU(2) in more detail. There is, however, an experimental fact that is
strongly related to the choice of n = 2 and that is the fact that the beam under observation
in the Stern-Gerlach experiment actually splits up into 2 beams when going through an
inhomogeneous magnetic field.

Let us now consider an electron in a system with rotational symmetry. As we learned
before such a symmetry can be expressed as a projective representation of SO(3)
p:S03) — GL(L*(R®) @ C?) (92)
R +— pr  with pg, opr, = w(Ri, R2) prioR, (93)
where in general we only know that |w(g1,g2)| = 1. Such a map is given by
(prV)(z) := V(R 'z) ® SR€ with Sg, 0 Sr, = +Sr, R, (94)

As with the choice for H, this is again only an educated “guess” which can only be justified
later, when we actually see the results obtained with it. For the moment I would just like
to point out that this choice ...

(a) ... has physical merit because it incorporates ¥ — W(R™!)

(b) ... is the simplest choice for a projective representation that is non-trivial (i.e. where
the phase-factor w is not just simply chosen to be 1).

As has been discussed previously it is now possible to “lift” p to a unitary representation
p of SU(2) which shall be denoted symbolically as:

pu = Y(rU)™r) ® Sy with U e SU(2) (95)

With this representation p we can now define the total angular momentum operator Ji as
Je = ihpg, (96)

P el + 19S5, (97)

where Ly is defined as in eq.35 and refers to the electron’s orbital angular momentum
while S; := ih S}, is interpreted as the electron’s intrinsic angular momentum.
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4 SU(2) and its irreducible representations

In this chapter we will study the irreducibel representation of SU(2). This can be done
using either the global or the infinitessimal method. Since the former requires a mathe-
matical tool we haven’t discussed so far (the “Haar-measure”) I will focus on the latter and
only outline the main results of the global method leaving it up to the individual to read
up on it in further detail. At the end of this chapter the following results will hopefully be
more clear:

e The irreducible representations D’ of SU(2) can be indexed with j = 0, %, 1, %,
and are therefore countable. Their dimension is given by:
dim(D?) =25 + 1 (98)

e The angular momentum operator L? := Y k=123 L;? induced by this representation

takes on the simple form
L? = j(j + 1)id (99)

where Ly, := ih{D7}*(0},) is defined on the Lie Algebra level.

e The character x/ of the irreducible representation D7 is given by x/()\) = Z;i _j AZF
leading us to the well known Clebsch-Gordan-Series for adding angular momen-

tum in Quantum mechanics:

D7 @; D2 = plin—i2l @y @ plirtizl (100)

e The value for the irreducible representation D7 is given by:
DI(—1) = (-1)¥1 (101)

This entails that all even numbered representations D7 on SU(2) induce a unique
representation on SO(3) while the odd numbered induce an ambiguous representation
on SO(3).

4.1 The infinitesimal method

Let us consider an irreducible representation D : SU(2) — GL(V) on a finite-dimensional
vector-space V with dimV = n + 1 with n € Ny. Since SU(2) is simply connected, D is
irreducible if and only if D* : su(2) — ¢l(V) is irreducible which allows us to derive the
properties of D mentioned in the introduction on the level of D*. To this end let us define

the operators
Li = ZD*(O'Z) and L:t = L1 + iLQ (102)
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(where i = 1,2,3 and h was omitted for simplicity reasons) which have the following
commutator relationships:

[Li,Lj] = e Ly as shown in eq. 36 (103)
(L3, L] = [L3, L] % [Ly,iLo] = iLo + (—i*) L1 = £ L4 (104)
[L+, L,} = [Ll +ilo, L1 — ZLQ] = —Qi[Ll, LQ} =2L3 (105)

Step1 - constructing a basis in V: From linear Algebra we know that for L3 linear
we have at least one complex Eigen-value A with Eigen-vector v; # 0. With the above
equations it is furthermore easy to see that:

105 %
Ly(Lyvs) = Li(Lsvs) + [Ls, LeJog “=" (A& 1)Lyvy (106)

This shows that Livs is an Eigen-vector for L3 with Eigen-value A+1. This allows us now
to find a basis of V by iteratively applying L+ to v5. But since V is finite dimensional it is
obvious that for some n € N this iterative chain must end:

Ly(Livs) = (A + ) Lhv;  and Lty =0 (107)
A V)

Now we can go the opposite direction by applying L_ to vy iteratively and will again
encounter a termination-condition:

L3(L"vy) = (A — n)L vy and L'y =0 (108)

While the number of steps n going “up” to the termination-condition were unknown, the
number of steps coming “down” is equal to the dimension n of the vector-space V. This
shall be illustrated in the following sketch:

n—times
Ly L, L, L,
vy Uy, — Usis —0
| (109)
L_ L_ L_ L_
0+— vy_p — — Uyl — Uy
n—times

Step 2 - finding a relationship between )\ and n: From a physics point of view
A is an interesting variable because it is the maximum value that can be observed for
the z-component of the angular momentum. It would therefore be desirable to index the
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irreducible representations with A rather than their dimension n. That is the motivation

for us to derive an analytic relation between those two variables in the following:

. .108
Livsr = Ly(L-vy) = L_(Lsvy) + [Ly, L]y =" 2) oy
N — _.
eq. 109, eqbzloszL3 TiHA-1

Def. .10
L_|_’U,\,2 = L+(L_’U)\,1) =L_ (L+’U,\71) + [L+, L_] Ux—1 = (,Uf)\fl + 2()\ - 1)) Vr—1

HX—17 . 105 =

Livp1=pp + 2pv, forp=AA-1,A-2,.,A—(n—1) and puy=0
———

Hp—1

(110)

By inserting our previous results we can then arrive at an explicit expression for 1,1

fp1 = 2\ + 20A—1) + .. + 2p
=20+ (A=1) + ... + p)
A—p+1 terms

= 2[Z0+DO-p+1)| = (DA -p+1)

(111)
(112)

(113)

We now use again a termination condition to derive a direct relation between n and A

L+ (L_’U)\,n) = L_( L+'U)\7n ) + [L+,L_]'l))\,n
—_—— —— —_——
0 HUA—nVUx—n+1 cq<:1052L
3
eq. 108
= [:U’)\—n + 2()‘ - n)]fUA—n
~—~—
#0
— 0 = [a—n + 2(A—n)]
= HX—n—1
eq. 113
= A4+ (N — A—(A— 1
A+ Q=)A= (Q—n)+1]
p p

= 2\ —=n)(n+1)
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It is therefore legitimate to label the irreducible representations with an index?®:

A = 2 withneN
dim(D*) = 2X\+1

(120)

With all these preparation it is now fairly easy to derive the eigenvalues of L? = > L?
which we already used in section 1.4. This will be done again in two steps: in step 1 the
relationship L? = L§ + L3+ L_L, will be shown and in step 2 we are going to show that
L*vy,_1 = AA+1).

Step 1 - deriving the expression L? = L3 + L3 + L_L,: Let’s start by having a look
at the last two terms:

105 1
Ly+L L, 2% Sl L]+ LoLy (121)
1
= S(LeLo+L_Ly) (122)
Def

o1 . . . .
= 5 {(L1 + ZLQ)(Ll — ’LLQ) + (L1 — ZLQ)(Ll + lLQ)} (123)
= I3+ I3 (124)
With that it is easy to see the assertion.

Step 2 - deriving the Eigen-value \(\ + 1) of L?: with the expression L? = L%+ L3 +
L_L, derived in step 1, it is easy to see that:

L2y = {L2+ Ly+ L Lyt oy 270 (A2 4 \oy = A(A + Doy (125)

which proofs the assertion. For p = A A — 1, A —2,.... A — (n — 1) we have to work a bit
harder:

L*vpy = {L3+Ls+L_Li}v, (126)
= 124 (- D)+ A+ p)A—p+ 1)} up (127)

= {@*-2p+ 1)+ (-1 +N=p+A+pA—p* +p)}tv,1 (128)

= MA+1uy (129)

This shows that any vector in V has the same L2-Eigenvalue A\(\ + 1) that determined by
the irreducible representation D* associated with V.

Zstrictly speaking we would still have to proof that the irreducible representation we found here are
really all there are; For further details you can consult Straumann page 153.
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4.2 The global method

As mentioned at the beginning of this chapter the global method requires the knowledge of
the so called “Haar-measure”, a mathematical tool we haven’t acquired so far. Therefore I
will only outline its general idea in this section. For more details please consult Straumann,
page 153.

Let us consider the vector-space V of all polynomials \Ilfn(fl, &2) in 2 complex variables of
degree 2j with j =0, %, 1,..:

+j
Vj = { Z )‘m\:[lzn(fhéé) Do Ams 1,62 € C} (130)

m=—j

where U, (&,6) = neE m;!(j _ m)!§{+m jm (131)

On this vector-space it is straight forward to define a representation D7:

Di: SU?2) —  GL(V) (132)
U ~— D} with D} w(¢):=w(UT¢) (133)
Of course it needs to be verified that this is indeed a representation. But if we assume

for now that it is, and if we furthermore assume to know that each and every conjugacy
classes of SU(2) can be represented with

Uy = <3 g) with [A =1 and [U)] = [U5] (134)

then it is straight forward to derive an analytic expression for the character x/(Uy) =
tr(Dy;, ) of D7 by looking at the image Dy, ¥7,() of the basis-vectors:

D wi(6) " W, (UT€) = W, (A1, M) (135)

Def. XM gl zFtm A =(mm) g (136)

With this result it is straightforward to see that:

DI(-1) = (-1)¥1 (138)
X (Uy) = Zr—yzfj)\zm
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At this point it would be easy to proof that D7 is indeed irreducible by showing that
X)) =1 (139)
if it wasn’t for the fact that SU(2) is an infinite group. For the latter we haven’t discussed
how to sensibly define the scalar-product so far and it is beyond the scope of these notes to
do so here. But we can mention in bypassing that it would require the definition of the so

called “Haar-measure” which can be found again in Straumann (Appendix B) and allows
one to show that the previous equation is indeed true.

Knowing the character of the irreducible representations it is now easy to show that:

Dt ®s D2 — plit—jl @ .. plitil (140)
which is known as the Clebsch-Gordan series. Since we know from eq. 80 that:
b1 A b2 A
A® B = (141)

it is obvious that the character of the tensor-product of two representations is the product
of the characters which can be written as follows:

KOO = X)X (142)
+71 +J2
= ) ) pmEm) (143)
mi=—j1 me=—j2
l7itge|l 44
= > Do (144)
Jj=lji—ja2| m=—j

XD

The last equal-sign requires a bit of thinking and shall be illustrated here for the simple
example: j; = 3 and jo = 2. Then the terms of the sum in eq. 143 can be summarized in
the following matrix and the summation is carried out row after row:

AAEDHED] Z2AEBHD] N2ACDH0] Z2A(=3)+1] \2[(-3)+2]
A2ACDHED] N2A2HD] N2ACDH0] N2A(-2)+1] \2[(-2)+2]
AACDHED] Z2ACDHED] p2ACDH0] Z2A(-D)+1] \2[(-1)+2]

22[0+(=2)] A2[0+(=1)] )\2[0-+0] \2[0+1] 2[0+2] (145)
NMLHE2] DL 0 2] g2
A2[2+(=2)] A2[2+(=1)] )\2[2+0] A\2(2+1] A\2[2+2]
A2[B3+(=2)] A2[B+(=1)] )\2[3-+0] A\2[3+1] \2[3+2]
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Going from eq. 143 to eq. 144 simply changes the order in which the terms of the previous
matrix are added as illustrated in the following figure:

AAEDHED] N2ABHD] N2ACDH0]  Z2A(=3)+1]  \2[(-3)+2]
AACDHED] N2A-2HD] N2ACDH0]  N2A(-2)+1] \2((-2)+2]
AACDHED] N2ACDHD] N2ACDH0] Z2A(-DF] \2[(~1)+2]

\2[0+(=2)] A2[0+(=1)] )2[0-+0] \2[0+1] 2[0+2] (146)
NIHC2] D] 200 2] (142
A2[2+(=2)] A22+(=1)] )\2(2-+0] A\2(2-+1] A\2[2+2
A2[B3+(=2)] A2[3-+(=1)] A\2[3+0] A\2[3+1] A\2[3+2]

4.3 Clebsch-Gordan coefficients

Every irreducible representation D! on V has a canonical basis By = {e{”};lzfl and simi-

larly: every irreducible representation D® on W has a canonical basis By = {e?} 5 . If
one reduces the representation D'®; D® on VW into D' ®; D* = @MS' |Dj then a natural

j=|l—s

+7_ on which D7 acts canonically (by

question is how to find a new basis Bygy = {e}”}m:_ y

canonical we mean that Jzej" = me’" and J+e§ = 0). This question is answered by the
Clebsch-Gordan Coefficients which are the matrix elements of the basis transformation:

+1 +s
e = Z Z (ef' e @ef™) /" @ ey (147)
m=—lmy=—s "
(Imy sms|jm)

The coefficients (Im; sms|jm) in this equation are called the Clebsch-Gordan coeffi-
cients and can be looked up in tabular form in Quantum Mechanics books.
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