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Problem 8.1 Lindhard function

At T = 0 the Fermi-Dirac distribution function n0,~k reduces to θ(εF − ε~k). As usual, we
go from the discrete summation to a d-dimensional integral. Then, the static Lindhard
function is given by

χ0(~q) ≡ χ0(~q, ω = 0) =
1

Ω

∑
~k

n0,~k+~q − n0,~k

ε~k+~q − ε~k − i~η
=

1

(2π)d

∫
ddk

θ(εF − ε~k+~q)− θ(εF − ε~k)
ε~k+~q − ε~k − i~η

(1)
with the Fermi energy εF and the Heaviside step function

θ(x) =

{
1 , x ≥ 0

0 , x < 0
. (2)

Next we split the integral and perform a change of variables in the first integral (~k → ~k − ~q)
such that

χ0(~q) = − 1

(2π)d

∫
ddk θ(εF − ε~k)

(
1

ε~k+~q − ε~k − i~η
− 1

ε~k − ε~k−~q − i~η

)
. (3)

The dispersion relation for free electrons is given by ε~k = ~2~k2/2m. We can therefore define

the Fermi wave vector kF =
√

2mεF/~ and the integration can be simplified further to

χ0(~q) = − 1

(2π)d
2m

~2

∫
|~k|<kF

ddk

(
1

~q(~q + 2~k)− i~′η
+

1

~q(~q − 2~k) + i~′η

)
. (4)

where we introduced the abbreviation ~′ = 2m/~.
Now we can split the Lindhard function into its real and imaginary part using the relation

lim
η→0

(z − iη)−1 = P
(

1

z

)
+ iπδ(z) . (5)

This leads to

Re(χ0(~q)) = − 1

(2π)d
2m

~2

∫
|~k|<kF

ddk P

(
1

~q(~q + 2~k)
+

1

~q(~q − 2~k)

)
, (6a)

Im(χ0(~q)) = − π

(2π)d
2m

~2

∫
|~k|<kF

ddk
[
δ(~q(~q + 2~k))− δ(~q(~q − 2~k))

]
. (6b)

We see that when considering two points ~k1 = −~k2, the integrand for the imaginary part
is the same but with an opposite sign. As the integration volume is symmetric under
inversion, both points will contribute to the integral and therefore cancel. This leads to a
vanishing imaginary part for all dimensions. We are therefore now only interested in the
real part of the Lindhard function.
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(a) In the 1 dimensional case the respective integral is then simply given by

Re(χ1d
0 (q)) = − 1

2π

2m

~2

kF∫
−kF

dkP
(

1

q(q + 2k)
+

1

q(q − 2k)

)
. (7)

We remark that the singular point in the integral for |q| < 2kF is ‘cured’ by η. This
means that we are actually calculating the Cauchy principal value, which leads to a
well-defined integral.

For instance, let’s consider the integral

kF∫
−kF

dk

q + 2k
(8)

for |q| < 2kF. There is a singularity at k = −q/2 such that the integral is not well
defined from a ’mathematical’ point of view. However, the principal value

P
kF∫

−kF

dk

q + 2k
= lim

δ→0

 −q/2−δ∫
−kF

dk

q + 2k
+

kF∫
−q/2+δ

dk

q + 2k

 (9)

is well defined because there are no singularities within the integrals. We calculate
then

P
kF∫

−kF

dk

q + 2k
= lim

δ→0

(
1

2
log |q + 2k|

∣∣∣∣−q/2−δ
−kF

+
1

2
log |q + 2k|

∣∣∣∣kF
−q/2+δ

)

= lim
δ→0

(
1

2
log

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣+
1

2
log

∣∣∣∣−δδ
∣∣∣∣) =

1

2
log

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣ .
(10)

Therefore we can work with the integrals as if there were no singular points

Re(χ1d
0 (q)) = − m

π~2q
P

kF∫
−kF

dk

(
1

q + 2k
+

1

q − 2k

)
= − m

π~2q

(
1

2
log

∣∣∣∣q + 2k

q − 2k

∣∣∣∣)∣∣∣∣kF
−kF

= − m

π~2q
log

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣ .
(11)

This function is shown in Fig. 1 (left).

(b) In the three dimensional case we may assume ~q = q ~ez since the system is isotropic.
The integral then reduces to

χ3d
0 (~q) = − 1

(2π)3
2m

~2

∫
|~k|<kF

d3k

(
1

q(q + 2kz)− i~′η
+

1

q(q − 2kz) + i~′η

)
. (12)

After a change to cylindrical coordinates (kx = r cos(φ), ky = r sin(φ), kz = kz with
k2 = r2 + k2z < k2F) we get

− m

4π3~2

kF∫
−kF

dkz

√
k2F−k2z∫
0

dr r

2π∫
0

dφ

(
1

q(q + 2kz)− i~′η
+

1

q(q − 2kz) + i~′η

)
. (13)
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Figure 1: Plots of Re(χ0(q)) for a 1-dimensional (left) and 3-dimensional system (right).
The exact graph is difficult to interpret, but the divergence at q = 2kF in the 1D system
is clearly visible. We will see later that this is responsible for (among others) the Peierl’s
instability in 1D systems.

The integration over r and φ is straightforward and we find similar to (a) the real
part of χ0(~q)

Re(χ3d
0 (~q)) = − m

2π2~2q
P

kF∫
−kF

dkz
k2F − k2z

2

(
1

q + 2kz
+

1

q − 2kz

)
. (14)

After performing the integral we obtain

Re(χ3d
0 (~q)) = − mkF

4π2~2

[
1− q

4kF

(
1− 4k2F

q2

)
log

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣] . (15)

This function is shown in Fig. 1 (right).
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