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Problem 8.1 Lindhard function

At T = 0 the Fermi-Dirac distribution function n,; reduces to 6(er — €;). As usual, we
go from the discrete summation to a d-dimensional integral. Then, the static Lindhard
function is given by
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with the Fermi energy erp and the Heaviside step function
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Next we split the integral and perform a change of variables in the first integral (E — k- q)
such that
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The dispersion relation for free electrons is given by e; = h? 2 /2m. We can therefore define
the Fermi wave vector kp = 1/2mep/h and the integration can be simplified further to
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where we introduced the abbreviation A’ = 2m/h.
Now we can split the Lindhard function into its real and imaginary part using the relation
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We see that when considering two points k= —122, the integrand for the imaginary part

is the same but with an opposite sign. As the integration volume is symmetric under
inversion, both points will contribute to the integral and therefore cancel. This leads to a
vanishing imaginary part for all dimensions. We are therefore now only interested in the
real part of the Lindhard function.



(a) In the 1 dimensional case the respective integral is then simply given by

kp
gy — L 2m ! !
Re(xs"(0)) = “or e | P (q(q + 2k) " q(q — Qk)) ' ")

—kp

We remark that the singular point in the integral for |¢| < 2kp is ‘cured’ by 7. This
means that we are actually calculating the Cauchy principal value, which leads to a
well-defined integral.

For instance, let’s consider the integral
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for |g| < 2kp. There is a singularity at K = —¢/2 such that the integral is not well
defined from a 'mathematical’ point of view. However, the principal value
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is well defined because there are no singularities within the integrals. We calculate

then
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Therefore we can work with the integrals as if there were no singular points
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This function is shown in Fig. 1 (left).

(b) In the three dimensional case we may assume ¢ = ¢ €, since the system is isotropic.
The integral then reduces to
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After a change to cylindrical coordinates (k, = rcos(¢), k, = rsin(¢), k, = k, with
k* =12+ k? < k3) we get
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Figure 1: Plots of Re(xo(q)) for a 1-dimensional (left) and 3-dimensional system (right).
The exact graph is difficult to interpret, but the divergence at ¢ = 2kp in the 1D system
is clearly visible. We will see later that this is responsible for (among others) the Peierl’s
instability in 1D systems.

The integration over r and ¢ is straightforward and we find similar to (a) the real
part of xo(2)
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After performing the integral we obtain
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This function is shown in Fig. 1 (right).



