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Problem 3.1 The Kronig-Penney model

(a) With ya = x and ϕ(y) = Ψ(x) we obtain the Schrödinger equation

−ϕ′′(y) + v
∑
n

δ(y − n)ϕ(y) = β2ϕ(y). (1)

Since δ(y 6= 0) vanishes we can write the general solution of the Schrödinger equation
for y ∈ (n, n+ 1) in the form

ϕ(y) = Aeiβy +Be−iβy, E =
~2β2

2ma2
. (2)

Using Bloch’s ansatz we find the solution in the interval y ∈ (n + 1, n + 2) through
ϕ(y + n) = exp(iλn)ϕ(y). For y = n, ϕ′(y) has a jump. To see this, we integrate the
Schrödinger equation from n− η to n+ η and then let η → 0. Thus, one obtains

−ϕ′(n+ 0+) + ϕ′(n+ 0−) + vϕ(n) = 0. (3)

Thus, the boundary conditions linking an interval (n, n + 1) with an interval (n +
1, n+ 2) read

Ã+ B̃ = e−iλ(Ãeiβ + B̃e−iβ), (4)

Ã− B̃ = e−iλ
(
Ãeiβ − B̃e−iβ

)
+

v

iβ
(Ã+ B̃), (5)

where we have set Ã = Aeiβn and B̃ = Be−iβn. We can rewrite this equation in
matrix form, (

1− e−i(λ−β) 1− e−i(λ+β)
1− e−i(λ−β) − v

iβ
−1 + e−i(λ+β) − v

iβ

)(
Ã

B̃

)
= 0. (6)

The determinant vanishes when

cosλ = cos β +
v

2β
sin β. (7)

This equation determines the dispersion E = E(k) of the electrons in the periodic
potential.

The right hand side of Eq. (7) is plotted in Fig. 1. As the left hand side of Eq. (7)
takes values only between −1 and 1, there are no solutions for energies where | cos β+
v
2β

sin β| > 1.

Remark: Actually, we can solve Eq. (7) also for energies where the right hand side is
not between −1 and 1. For such energies, we find an imaginary λ which, in an infinite
system, always leads to exponential growth in one direction and thus to unphysical
solutions. This is, however, not the case if our system ends at some point. Then, we
can have a localized state at the surface, cf. part d.

(b) We can now analyze the dispersion for the two limits v � 1 and v � 1.
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Figure 1: Graphical solution of Eq. (7). Allowed energies are hatched.

• In the limit v = 0, Eq. (7) yields the condition

β = λ+ (2nπ) ⇒ E =
~2

2m
(k +G)2 , (8)

where G = 2nπ/a is a reciprocal lattice vector. We therefore obtain the disper-
sion of free electrons.

For v � 1 but v 6= 0, there are some forbidden regions (band gaps) for β, cf.
Fig. 1. The dispersion (8) is modified to

β = λ+ 2nπ + δ , (9)

where δ � 1. At the boundary of the Brillouin zone, λ = π, we can approximate

cos β ≈ −
(

1− δ2

2

)
, sin β ≈ −δ , and

1

2β
≈ 1

2π(2n+ 1)

(
1− δ

(2n+ 1)π

)
,

(10)
such that (keeping terms up to second order in δ and v) Eq. (7) is approximated
by

0 =
δ2

2
− vδ

2π(2n+ 1)
⇒ δ ∈

{
0,

v

(2n+ 1)π

}
. (11)

We obtain the energy as

E ≈ ~2

2ma2
(
(2n+ 1)2π2 + 2(2n+ 1)πδ

)
, (12)

leading to a band gap of
∆E ≈ 2V0/a . (13)

The same calculation can be performed for λ = 0, in the middle of the Brillouin
zone, also leading to an energy splitting of ∆E ≈ 2V0/a.

• In the limit v →∞, Eq. (7) only has a solution for

sin β = 0 , β 6= 0 ⇒ E =
~2n2π2

2ma2
, n = 1, 2, . . . , (14)

which corresponds to a system of disconnected infinite wells.
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For v � 1 but not in the infinite limit, we approximate β starting from Eq. (14)
by

β = πn+ δ , (15)

with δ � 1. This leads to

E ∝ β2 ≈ n2π2 + 2nπδ . (16)

Assuming v � 2nπ, and approximating

cos β ≈ (−1)n , sin β ≈ (−1)nδ , and
1

2β
≈ 1

2nπ
, (17)

Eq. (7) is approximated by

cosλ ≈ (−1)n
(

1 +
v

2nπ
δ
)
⇒ δ ≈ (−1)n

2nπ

v
(cosλ− 1) . (18)

Inserting this into Eq. (16), we obtain a tight-binding-like dispersion

β2 ≈ n2π2

(
1 +

4(−1)n

v
(cosλ− 1)

)
, (19)

where the hopping matrix element is proportional to n2 and inversely propor-
tional to v.

(c) For a finite periodic system of length Na there are dkNa/2π states in the interval dk.
The number of states in the energy interval dE is thus given by

2
Na

2π
dk = 2

Na

2π

∣∣∣∣ dkdE
∣∣∣∣ dE. (20)

The additional factor of 2 comes from the fact that the bands are symmetric with
respect to k = 0. We thus find

ρ(E) =
Na

π

∣∣∣∣ dkdE
∣∣∣∣ =

N

π

∣∣∣∣dλdβ dβdE
∣∣∣∣ =

Nma2

~2πβ

∣∣∣∣dλdβ
∣∣∣∣ . (21)

From Eq. (7) we find

∣∣∣∣dλdβ
∣∣∣∣ =

∣∣∣(1 + v
2β2 ) sin β − v

2β
cos β

∣∣∣√
1−

(
cos β + v

2β
sin β

)2 . (22)

The density of states is shown in Fig. 2. It has square-root singularities at the band
boundaries, ∝ |ε − ε0|−1/2, where ε = β2 and ε0 = β2

0 with β0 a solution of | cos β0 +

v
2β0

sin β0| = 1. To see this we define δβ = |β − β0|, f(β) = 1 −
(

cos β + v
2β

sin β
)2

and s = sign(f ′(β0)). It then follows that

f(β0 + sδβ) ≈ |f ′(β0)|δβ ≈
|f ′(β0)|

2β0
δε, (23)

where δε = |ε − ε0|. Note that the total number of states (the area under ρ(E)) is
equal for all bands which is due to the factor β−1 in Eq. (21).
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Figure 2: Density of states ρ(ε) of the Kronig-Penney model with the square root diver-
gences at the boundaries, typical of one-dimensional systems.

(d) We start with the ansatz

ϕ(y) =

{
Ceκy y ≤ 0,

Aeiβy +Be−iβy y > 0.
(24)

From the continuity of the wave function and its first derivative at y = 0 we find the
condition

A

B
= −κ+ iβ

κ− iβ
. (25)

In addition, the first line of Eq. (6) yields

A

B
= −1− seµe−iβ

1− seµeiβ
, (26)

where we have used the notation of the exercise sheet. From these equations it follows
that

se−µ =
κ

β
sin β + cos β. (27)

with Eq. (7) in the form
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Figure 3: Graphical solution of Eq. (29).
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s coshµ =
v

2β
sin β + cos β, (28)

and some straightforward calculation to eliminate µ, these two equations yield the
relation

β cot β =
u

v
−
√
u− β2, (29)

defining the energies of the surface states. Since cot β takes all the values between
−∞ and ∞ for β ∈ (nπ, (n + 1)π), there is exactly one solution in every band gap
(except for the first if u/v−

√
u > 1). Fig. 3 shows the graphical solution of Eq. (29).

Appendix A: Solution of part 1(a) in Fourier space.
Because of the periodicity of the system it is natural to solve the Schrödinger equation in
the Fourier space. Introducing the Fourier transformations

ϕ(y) =

∫
dq

2π
eiqyϕ̃(q)

V (y) =

∫
dq

2π
eiqyṼ (q)

with q = ka =: λ and Ṽ (q) =
∑

n e−iqn and Fourier transforming the Schrödinger equation
(1) we get

q2ϕ̃(q) +
v

2π

∫ +∞

−∞
dk

+∞∑
n=−∞

eiknϕ̃(k + q) = β2ϕ̃(q). (30)

From the formula f(k) =
∑+∞

n′=−∞ δ(k+ 2πn′) =
1

2π

∑+∞
n=−∞ eikn (Fourier series decompo-

sition of the 2π-periodic function f(k)) one obtains

q2ϕ̃(q) + v
+∞∑

n′=−∞

ϕ̃(q − 2πn′) = β2ϕ̃(q). (31)

Performing the substitution q = q̄ + 2πn and defining ϕ̃(q̄ + 2πn) =: ϕ̃n(q̄) we get

(q̄ + 2πn)2ϕ̃n(q̄) + v
+∞∑

n′=−∞

ϕ̃n′(q̄) = β2ϕ̃n(q̄). (32)

(The second term of the left hand side was found after rearranging the terms of the sum∑
n′ ϕ̃(q − 2πn′) =

∑
n′ ϕ̃(q̄ + 2πn − 2πn′) =

∑
n′ ϕ̃(q̄ + 2πn′) =

∑
n′ ϕ̃n′(q̄).) We can

rewrite the equation as

ϕ̃n =
v
∑

n′ ϕ̃n′

β2 − (q̄ + 2πn)2
. (33)

Summing over n on both sides we finally find

1 =
+∞∑

n=−∞

v

β2 − (λ+ 2πn)2
. (34)

We can now show that this equation is equivalent to (7): Let us write the above condition
as

1/v =
∞∑

n=−∞

f(2πn) (35)
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with

f(z) =
1

β2 − (λ+ z)2
. (36)

To calculate such an infinite sum, often complex analysis can be useful: The function

g(z) =
1

1− eiz
(37)

has poles at z = 2πm with residue i. If we now consider the integral∫
γ

dz

2πi
f(z)g(z) (38)

with γ a circle of radius R with R→∞, this integral vanishes as f(z)z → 0 for |z| → ∞
while g(z) is finite. Making use of the residue theorem and of the fact that f(z) has poles
for z = ±β − λ, we obtain

0 =

∫
γ

dz

2πi
f(z)g(z) =

∑
n

f(2πn) · i (39)

+ Resz=β−λf(z)g(β − λ) + Resz=−β−λf(z)g(−β − λ),

where we already used that the Residues of g(z) at the poles is i. This expression can be
evaluated and simplified to

1

v
=

∞∑
n=−∞

f(2πn) =
sin β

2β

1

cosλ− cos β
, (40)

from which Eq.(7) follows directly.

Appendix B: Transfer matrix approach to the KP model.
Both the infinite and the semi-infinite Kronig-Penney model can be solved with the
transfer-matrix approach. In fact, while for the infinite Kronig-Penney model the ap-
plication of the Bloch theorem is justified, this is not the case for the semi-infinite model
as there translational invariance of the system is not fulfilled. However, we will see that
it leads to the right result as it enforces the right condition on the surface state.

Infinitely extended Kronig-Penney model
Let us start by considering the infinite Kronig-Penney model discussed in Ex.1.1. We use
the notation from the exercise and the solution sheet.
We start by considering states with a certain energy E (and corresponding β = a

√
2mE/~2).

In between the delta-barriers, the state is given by a superposition of plane wave states.
Therefore, the state ϕ(y) is given by a combination of the states in between the delta-
functions and we define ϕ(y) as

ϕ(n− 1 ≤ y ≤ n) = ϕn(y) (41)

where ϕn(y) describes the wave function in the region [n− 1, n] and is given as

ϕn(y) = Ane
iβ(y−n+1) +Bne

−iβ(y−n+1) (42)

with the coefficients An and Bn characterizing the state in this region (Note that we
splited off a phase exp(±iβ(n− 1)) on the purpose of simplification).
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Due to the two conditions at every delta-function, i.e.

ϕn+1(n) = ϕn(n), (43)

ϕ′n+1(n) = ϕ′n(n) + vϕn(n), (44)

we get a connection between the coefficients (An, Bn) and (An+1, Bn+1) of the form(
An+1

Bn+1

)
= M

(
An
Bn

)
(45)

with the matrix M given as

M = L−1V LT (46)

with

L =

(
1 1
iβ −iβ

)
, (47)

V =

(
1 0
v 1

)
, (48)

T =

(
eiβ 0
0 e−iβ

)
. (49)

The determinant of M is 1 (detM = 1) which means that the product of the eigenvalues
of this matrix µ1/2 fulfill µ1 ·µ2 = 1 and therefore either |µ1| = |µ2| = 1 or |µ1| < 1 < |µ2|
(where we have assumed µ2 to be the larger eigenvalue).
The eigenvalues can be calculated and one obtains

µ1/2 = cos(β) +
v

2β
sin(β)∓

√(
cos(β) +

v

2β
sin(β)

)2
− 1. (50)

We have to distinguish two cases: i) | cos(β)+ v
2β

sin(β)| < 1 and ii) | cos(β)+ v
2β

sin(β)| > 1.

As we will discuss right now, this condition determines if at a certain energy E (at a
certain β), a state can exist. We will see, that in the first case i), states exist, whereas
the second case ii) leads to unphysical behavior and therefore no states. This leads to the
opening of a band gap as discussed on the solution sheet.

Case i): | cos(β) + v
2β

sin(β)| < 1 In this case, we should rewrite the eigenvalues as

µ1/2 = cos(β) +
v

2β
sin(β)∓ i

√
1−

(
cos(β) +

v

2β
sin(β)

)2
. (51)

The absolute value of this eigenvalues is 1 and therefore, we can write µ1/2 = e±iλ (with λ
having the same meaning as on the exercise sheet) which leads to the dispersion relation

cos(λ) = cos(β) +
v

2β
sin(β). (52)

There are eigenvectors corresponding to these eigenvalues:

(
A(1/2)

B(1/2)

)
=

e−iβ(− cos(β) + 2β
v

sin(β)± 2β
v

√
1−

(
cos(β) + v

2β
sin(β)

)2)
1

 (53)
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From these eigenvectors, we can construct eigenstates of the system by plugging in an
eigenstate for ϕ0 and calculating the continuation from the transfer-matrices.
We have two eigenstates

ϕ(1/2)
n (y) = e±iλn(A(1/2)eiβ(y−n+1) +B(1/2)e−iβ(y−n+1)) (54)

such that directly for both states, the Bloch theorem is fulfilled. It is easy to see now that
λ introduced above is nothing else but the phase k · a between two points separated by a.
Case ii): | cos(β) + v

2β
sin(β)| > 1 In this case, the eigenvalues are given above as

µ1/2 = cos(β) +
v

2β
sin(β)∓

√(
cos(β) +

v

2β
sin(β)

)2
− 1. (55)

and the state vectors are(
A(1/2)

B(1/2)

)
=

e−iβ(− cos(β) + 2β
v

sin(β)± i2β
v

√(
cos(β) + v

2β
sin(β)

)2
− 1
)
.

1

 (56)

The eigenvalues are now real and we have µ1 = ±e−ρ and µ2 = ±eρ which would lead to
the two eigenstates

ϕ(1/2)
n (y) = (±1)ne∓ρn(A(1/2)eiβ(y−n+1) +B(1/2)e−iβ(y−n+1)) (57)

such that the state ϕ(1)(y) diverges for y → −∞ (as ϕ
(1)
n→−∞(y) diverges) and ϕ(2)(y)

diverges for y →∞ (as ϕ
(2)
n→∞(y) diverges).

Therefore, there are no states in the band gap for an infinitely extended Kronig-Penney
model. However, we will show next, that there are discrete surface states in the case of
an semi-infinite Kronig-Penney model.

Semi-infinitely extended Kronig-Penney model

We again consider a state with a given energy E < U0 and make the Ansatz

ϕ(y < 0) = Ceκy, (58)

ϕ(n− 1 ≤ y ≤ n) = ϕn(y). (59)

From the boundary at y = 0, we obtain the following condition on the coefficients A1 and
B1: (

A1

B1

)
= L−1

(
1
κ

)
C. (60)

Due to the transfer-matrix M , all other coefficients An and Bn are determined from A1

and B1. A state is physical if the coefficients stay finite for all n and do not diverge.
For the states in the energy band, this can be always fulfilled. For the states in the gap,
we have to make the following consideration:
The state vector (A1, B1) can be written as a linear combination of the eigenstates of M ,
i.e. (

A1

B1

)
= c1

(
A(1)

B(1)

)
+ c2

(
A(2)

B(2)

)
. (61)
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From our consideration above, we know that(
An
Bn

)
= c1µ

n
1

(
A(1)

B(1)

)
+ c2µ

n
2

(
A(2)

B(2)

)
. (62)

As |µ2| > 1 the state vector diverges if c2 6= 0. Therefore, to have a state in the gap, the
state vector (A1, B1) should be proportional to the first eigenvector, i.e.(

A1

B1

)
= c1

(
A(1)

B(1)

)
. (63)

This is the condition to find a surface state (as this component is decaying for n → ∞)
in the band gap. From this condition, we can derive the condition

A1

B1

=
A(1)

B(1)
. (64)

This equation has a real part and an imaginary part. Plugging both equations into each

other in order to eliminate

√(
cos(β) + v

2β
sin(β)

)2
− 1 and simplifying the equation, we

can obtain

β cot(β) =
u

v
− κ =

u

v
−
√
u− β2 (65)

which is the condition for a surface state mentioned on the exercise sheet and calculated
on the solution sheet using the Bloch Ansatz.

Why does Bloch’s Ansatz work?
As you can see above, it is important that the state vector (A1, B1) be an eigenvector
of the transfer-matrix (corresponding to the smaller eigenvalue). An eigenvector of the
transfer-matrix leads to a Bloch state as mentioned above. Therefore, the condition of
(A1, B1) being an eigenvector of the transfer-matrix and the state being a Bloch state with
decaying amplitudes are equivalent and lead to the same result. However, it is not justified
to use Bloch’s Ansatz without this correspondence or at least it does not guarantee to
find all the solution in general.
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