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Exercise 1. No-go theorem I: the no-programming theorem

In the lecture we have seen the most famous example of a quantum no-go theorem: the no-cloning theo-
rem. However, there are more theorems of this type showing that there are certain tasks that are possible
in a classical setting but cannot be achieved for general quantum systems. In this exercise we will prove
that it is impossible to build a programmable quantum gate array, i.e., to construct fized circuits that
take as input a quantum state specifying a quantum program and a data register to which the unitary U
corresponding to the quantum program is applied.

The input given to the programmable quantum gate array may have the form
|d) ® |Pu)

where |d) is the m-qubit data register and |Py) is a state of the m-qubit program register. The total
dynamics of the programmable gate array is given by a unitary operator G

|d) @ [Pu) — G[ld) @ [Py)] = (Uld)) ® |Py).

|d) — — Uld)

[Pu) —— — [Pv)

(a) Show that |P[;) must be independent of the input state |d).
(b) Suppose that distinct unitary operators Uy, Us,..., Un are implemented.

(i) Show that if the expression (d|UiTUj|d> is independent of |d) then UiTUj = v - id must hold.

(11) Use the result (i) to show that the corresponding programs |Py,), |Pu,)s---,|Puy) must be
mutually orthogonal.

(i4i) Discuss why this implies that there cannot exist a programmable quantum gate array that
works for arbitrary inputs U.

(c¢) The result above shows that no deterministic universal quantum gate array exists. We will see now

that the task is possible in a probabilistic fashion. For simplicity we only consider the case m = 1.
Show that

|Py) = (id®@ U)|[®" )12
can be used to successfully implement the desired transformation with probability 1/4.

Hint. Consider a measurement of the data register and the first subsystem of the program register
w.r.t. the Bell basis.

Solution.

(a) Suppose
|d1) @ [Pu) = (Ulda)) @ |P1).

|d2) ® |Py) = (Ulda)) @ |Ps).

Now take the inner product of these two equations yields (P1|P5) = 1 if (d1]|d2) # 0 and
thus [P]) = |Ps).



(1) UZ-T Uj is still unitary and therefore it can be diagonalised. From the condition it follows
that all the eigenvalues are identical. Therefore we have <d|UZ-TU]-|d> =V(\-id)VT =
A-id.

(ii) Suppose |P;) and |P;) are programs which implement two distinct unitary operators
U; and U; (up to a global phase). Then for arbitrary input |d) we have

Glld) ® |P;)] = (Uild)) & [P;)

Glld) @ [P;)] = (Uj|d)) & [Pj).

Now we take the inner product of these equastions

(Pi|Py) = (PUP}Y (d|UfU,|d). (S.1)

It <7>;\7>;> £ 0, then

PIBL — autula).

(PiP3)

The Ihs is independent of the inputs state |d) and therefore the rhs must be inde-
pendent as well. Using the result from (i) it follows that UZ-TUJ' = X -id. Therefore
we have U; = X - Uj, i.e., U; and U; are identical up to a global phase. But this is

in contradiction with our initial assumption and thus it follows that <7DZ’ ]PJ’> = 0.

From Equation (S.1) we then get (P;|P;) = 0. Therefore, in order to implement N
distinct unitaries we need at least N orthogonal program states, i.e., the state space
has to be N dimensional.

(iii) The number of possible unitary operations on m qubits is infinite and we have just
seen that every unitary operation requires an extra Hilbert space dimension. There-
fore, a universal gate array would require an infinite number of qubits (an N dimen-
sional Hilbert space contains log N qubits) in the program register.

(b) We have
[Pu) = (id ® V)@ * )1 = —=(0)U10) + [1}U]1)).

S

For an input |d) = a|0) + b|1) we can write
1

510U+ \1>U\1>>) -

(al0) + 0]1)) (

%H@*)(U!CD) +[27)(Uo:|d)) + |¥F) (Uogd)) +i[¥7)(Uay|d))]-

Now if the result from the measurement w.r.t the Bell basis corresponds to |®T), the the
post-measurement state of the second qubit of the program register will be U|d) as desired.
The probability of this outcome is equal to 1/4.

A detailed discussion can be found in PhysRevLett.79.321.



Exercise 2. No-go theorem II: unknown operations cannot be controlled in quan-
tum circuits

The quantum analogue of the “if ’-statement in classical computer programs is the control of a unitary
operation U depending on the value of a control qubit. This is represented by the transformation

(@l0)c + BI1)c)lY) = al0)clv) + BI1)cUly),
where C' is the control qubit and |¢) is the initial state of the target system.
In this exercise we will show that there is no quantum circuit that can implement the controlled U gate,

given as input a single copy of the unknown d X d gate U. Thus, the question is whether there exist
unitaries A and B such that the following circuit identity is satisfied.

|0>a4 * |O>a4 Wy 1—
—1 A B — =z —
] U * — U —

(a*) Show that the above identidy cannot be satisfied. In order to see this note that on the lhs substituting
U with €U does not produce any physical difference, but the same substitution on the rhs produces
a relative phase. Therefore it is only meaningful to ask whether a circuit can implement the control-
U modulo this global phase. The matriz representation of the control-U is given by idg®U. Defining
|U)q := Wy|0), the question is whether the identity

B(id, ® idy @ U)A|0)q = |U) a(idg & €™U)

holds for some arbitrary phase factor e®™. Show now that this equality cannot be satisfied for the
qubit unitaries X, Z, aX + Z, aX + BY and oY + fZ simultaneously (o and B are real numbers
such that a® + 8% =1).

(b) Unlike for the no-cloning theorem, this no-go theorem does not prevent quantum control of unknown
operations from being performed in practice. Explain how the circuit below implements a controlled
unitary transformation.

(alH) + BIV))
W) oo >

PBS

Here |H) and |V') represent horizontal and vertical polarization states of a photon and the PBSs
are polarizing beam splitters.

(¢) How does this interferometric implementation circumvent the no-go theorem we have just proved?

Solution.

a) Note that the (hs corresponds to the most general transformation that a quantum circuit
can effect on U.



Note that substituting U with ¢®U in the lhs results in
B(id, ® idy ® e"U)A|0), = € B(id, ® idy ® U)A|0),

whereas in the rhs we get '
|U) a(idg @ e™U).

Now it holds that two operations U and V can be physically distinguished if Jp such
that UpUT # VpVT. If U # €'V such a p exists. This can be seen as follows. We can
rewrite the condition as p # U~V p(U~'V)I. Because (U~'V) is still unitary it can be
diagonalised (U~'V) = WDWT and our assumption that (U~1V) # €*id implies that
D = diag(e'1, 2, ..., e'®) such that ¢; # ¢; for at least one pair (,7). Without loss of
generality let it be ¢1 and ¢9. Chose now

1 1

5y 0 0

T 1 o0 ..o
p=| 0 0

0o ... 0

For this choice of p we have that p # DpD? (in an eigenbasis of (U~'V)) which transforms
back into our original condition.

Now assume by contradiction that
B(id, ® idy @ U)A|0)q = |U)a(idg ® e™U) (S.2)

is true for X, Z and H = aX + 7.
For H we get from (S.2) that

Expanding the [hs and applying (S.2) again we get
a|X)(ida @ 67 X) + B 2)a(ida @ € 2)+ = | H)alidg @ €™ H).

Now we take the inner product with |H), (by multiplication with (H|, from the left) and
find
a(H|X), (idg @ e X) + B(H|Z), (idg @ ¥ Z) = (idg @ " H)

and hence
a(H|X), "X +B(H|Z),e*Z =e"H
=cMaX + B2).

Now we multiply this equation with X and take the trace (tr(XZ) = 0 and tr(X?) =
tr(id) = 2) yielding 4 ' ‘
a(H|X), e® = el = (H|X), = (")

and doing the same with Z we get

(H|Z), = "),



From the definition of |H), = aX|0); + 5Z]0), we get by taking the inner product with
itself
a(H|X),+B(H|Z),=1.

Plugging in that (H|X), = /") and (H|Z), = ¢""~2) we find
1 = aeih=2) 4 geilh—2 — ilh=2) (o | geile=2),
Taking the modulus squared yields
1= o +18]? + aBe’™ ) 4+ afe =2)

and therefore
0 = cos(z — 2).

Now we repeat the same thing for H = aX + Y and H = aY + SZ to find
0 = cos(z — z) and 0 = cos(z — y) and 0 = cos(y — z).

This equations cannot be satisfied for any angles x, ¥y and z, which shows that one cannot
control an unknown unitary in the quantum circuit model.

(b) The interferometer applies the transformation

(alH) + BIV)Y) = alH)[p) + BIV)U[Y)

for any unitary U.

(c) We show the following

(i) If one of the eigenvectors of U is known then the implementation of the controlled U
is possible.

(ii) In the interferometric implementation we know eigenvectors of the physical unitary.

(i) Consider the following circuit

l©)

[¥) — —
0) —] - - -

—e
.

Because it maps

(@|0) + B[1)[1)0) = al0)[y)U10) + B[1)U4)[0)

it corresponds to the circuit

o
~>
e




Here o is a controlled operation of 0.

Now this looks similar to the circuit corresponding to the controlled-U operation and
would be identical to it (with W, = id) if instead of the second unitary we would have
an identity operation. If we know an eigenstate |v) of the unitary U this is indeed
possible, because then, we can simply input |v) in the last wire instead of |0).

(ii) In the case of the interferometer the physical unitary does not only act on the
space of the qubit but also on the space of the photon modes. W.r.t. the basis
{]a0), |al),|b0), |b1)} the total unitary operation is given by

U o0
Uphysical = ( O 1d2 )

and therefore acts trivially on a two dimensional subspace. The corresponding eigenvectors
are |b0), |b1) and therefore known for all unitaries U.

A detailed discussion can be found in arxiv 1309.7976.



