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Exercise 1. No-go theorem I: the no-programming theorem

In the lecture we have seen the most famous example of a quantum no-go theorem: the no-cloning theo-
rem. However, there are more theorems of this type showing that there are certain tasks that are possible
in a classical setting but cannot be achieved for general quantum systems. In this exercise we will prove
that it is impossible to build a programmable quantum gate array, i.e., to construct fixed circuits that
take as input a quantum state specifying a quantum program and a data register to which the unitary U
corresponding to the quantum program is applied.

The input given to the programmable quantum gate array may have the form

|d〉 ⊗ |PU 〉

where |d〉 is the m-qubit data register and |PU 〉 is a state of the n-qubit program register. The total
dynamics of the programmable gate array is given by a unitary operator G

|d〉 ⊗ |PU 〉 → G[|d〉 ⊗ |PU 〉] = (U |d〉)⊗ |P ′
U 〉.

G

|PU 〉

|d〉

|P ′
U 〉

U |d〉

(a) Show that |P ′
U 〉 must be independent of the input state |d〉.

(b) Suppose that distinct unitary operators U1, U2, . . . , UN are implemented.

(i) Show that if the expression 〈d|U†
i Uj |d〉 is independent of |d〉 then U†

i Uj = γ · id must hold.

(ii) Use the result (i) to show that the corresponding programs |PU1
〉, |PU2

〉, . . . , |PUN
〉 must be

mutually orthogonal.

(iii) Discuss why this implies that there cannot exist a programmable quantum gate array that
works for arbitrary inputs U .

(c) The result above shows that no deterministic universal quantum gate array exists. We will see now
that the task is possible in a probabilistic fashion. For simplicity we only consider the case m = 1.
Show that

|PU 〉 = (id⊗ U)|Φ+〉12
can be used to successfully implement the desired transformation with probability 1/4.

Hint. Consider a measurement of the data register and the first subsystem of the program register
w.r.t. the Bell basis.

Solution.

(a) Suppose
|d1〉 ⊗ |PU 〉 = (U |d1〉)⊗ |P ′1〉.

|d2〉 ⊗ |PU 〉 = (U |d2〉)⊗ |P ′2〉.

Now take the inner product of these two equations yields 〈P ′1|P ′2〉 = 1 if 〈d1|d2〉 6= 0 and
thus |P ′1〉 = |P ′2〉.
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(i) U †i Uj is still unitary and therefore it can be diagonalised. From the condition it follows

that all the eigenvalues are identical. Therefore we have 〈d|U †i Uj |d〉 = V (λ · id)V † =
λ · id.

(ii) Suppose |Pi〉 and |Pj〉 are programs which implement two distinct unitary operators
Ui and Uj (up to a global phase). Then for arbitrary input |d〉 we have

G[|d〉 ⊗ |Pi〉] = (Ui|d〉)⊗ |P ′i〉

G[|d〉 ⊗ |Pj〉] = (Uj |d〉)⊗ |P ′j〉.

Now we take the inner product of these equastions

〈Pi|Pj〉 =
〈
P ′i|P ′j

〉
〈d|U †i Uj |d〉. (S.1)

If
〈
P ′i|P ′j

〉
6= 0, then

〈Pi|Pj〉〈
P ′i|P ′j

〉 = 〈d|U †i Uj |d〉.

The lhs is independent of the inputs state |d〉 and therefore the rhs must be inde-

pendent as well. Using the result from (i) it follows that U †i Uj = λ · id. Therefore
we have Uj = λ · Ui, i.e., Uj and Ui are identical up to a global phase. But this is

in contradiction with our initial assumption and thus it follows that
〈
P ′i|P ′j

〉
= 0.

From Equation (S.1) we then get 〈Pi|Pj〉 = 0. Therefore, in order to implement N
distinct unitaries we need at least N orthogonal program states, i.e., the state space
has to be N dimensional.

(iii) The number of possible unitary operations on m qubits is infinite and we have just
seen that every unitary operation requires an extra Hilbert space dimension. There-
fore, a universal gate array would require an infinite number of qubits (an N dimen-
sional Hilbert space contains logN qubits) in the program register.

(b) We have

|PU 〉 = (id⊗ U)|Φ+〉12 =
1√
2

(|0〉U |0〉+ |1〉U |1〉).

For an input |d〉 = a|0〉+ b|1〉 we can write

(a|0〉+ b|1〉)
(

1√
2

(|0〉U |0〉+ |1〉U |1〉)
)

=

1

2
[|Φ+〉(U |d〉) + |Φ−〉(Uσz|d〉) + |Ψ+〉(Uσx|d〉) + i|Ψ−〉(Uσy|d〉)].

Now if the result from the measurement w.r.t the Bell basis corresponds to |Φ+〉, the the
post-measurement state of the second qubit of the program register will be U |d〉 as desired.
The probability of this outcome is equal to 1/4.

A detailed discussion can be found in PhysRevLett.79.321.
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Exercise 2. No-go theorem II: unknown operations cannot be controlled in quan-
tum circuits

The quantum analogue of the “if”-statement in classical computer programs is the control of a unitary
operation U depending on the value of a control qubit. This is represented by the transformation

(α|0〉C + β|1〉C)|ψ〉 7→ α|0〉C |ψ〉+ β|1〉CU |ψ〉,

where C is the control qubit and |ψ〉 is the initial state of the target system.

In this exercise we will show that there is no quantum circuit that can implement the controlled U gate,
given as input a single copy of the unknown d × d gate U . Thus, the question is whether there exist
unitaries A and B such that the following circuit identity is satisfied.

|0〉a
A B

U

?
=

U

WU|0〉a

(a*) Show that the above identidy cannot be satisfied. In order to see this note that on the lhs substituting
U with eiφU does not produce any physical difference, but the same substitution on the rhs produces
a relative phase. Therefore it is only meaningful to ask whether a circuit can implement the control-
U modulo this global phase. The matrix representation of the control-U is given by idd⊕U . Defining
|U〉a := WU |0〉a the question is whether the identity

B(ida ⊗ id2 ⊗ U)A|0〉a = |U〉A(idd ⊕ eiuU)

holds for some arbitrary phase factor eiu. Show now that this equality cannot be satisfied for the
qubit unitaries X, Z, αX +βZ, αX +βY and αY +βZ simultaneously (α and β are real numbers
such that α2 + β2 = 1).

(b) Unlike for the no-cloning theorem, this no-go theorem does not prevent quantum control of unknown
operations from being performed in practice. Explain how the circuit below implements a controlled
unitary transformation.

(α|H〉+ β|V 〉)|ψ〉

U

PBS

PBS

Here |H〉 and |V 〉 represent horizontal and vertical polarization states of a photon and the PBSs
are polarizing beam splitters.

(c) How does this interferometric implementation circumvent the no-go theorem we have just proved?

Solution.

(a) Note that the lhs corresponds to the most general transformation that a quantum circuit
can effect on U .
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Note that substituting U with eiφU in the lhs results in

B(ida ⊗ id2 ⊗ eiφU)A|0〉a = eiφB(ida ⊗ id2 ⊗ U)A|0〉a

whereas in the rhs we get
|U〉A(idd ⊕ eiuU).

Now it holds that two operations U and V can be physically distinguished if ∃ρ such
that UρU † 6= V ρV †. If U 6= eiφV such a ρ exists. This can be seen as follows. We can
rewrite the condition as ρ 6= U−1V ρ(U−1V )†. Because (U−1V ) is still unitary it can be
diagonalised (U−1V ) = WDW † and our assumption that (U−1V ) 6= eiφid implies that
D = diag(eiφ1 , eiφ2 , . . . , eiφd) such that φi 6= φj for at least one pair (i, j). Without loss of
generality let it be φ1 and φ2. Chose now

ρ =


1
2

1
2 0 . . . 0

1
2

1
2 0 . . . 0

0 . . . 0
... . . .

...
0 . . . 0


For this choice of ρ we have that ρ 6= DρD† (in an eigenbasis of (U−1V )) which transforms
back into our original condition.

Now assume by contradiction that

B(ida ⊗ id2 ⊗ U)A|0〉a = |U〉a(idd ⊕ eiuU) (S.2)

is true for X, Z and H = αX + βZ.
For H we get from (S.2) that

B(ida ⊗ id2 ⊗ (αX + βZ))A|0〉a = |H〉a(idd ⊕ eihH).

Expanding the lhs and applying (S.2) again we get

α|X〉a(idd ⊕ eixX) + β|Z〉a(idd ⊕ eizZ)+ = |H〉a(idd ⊕ eihH).

Now we take the inner product with |H〉a (by multiplication with 〈H|a from the left) and
find

α 〈H|X〉a (idd ⊕ eixX) + β 〈H|Z〉a (idd ⊕ eizZ) = (idd ⊕ eihH)

and hence

α 〈H|X〉a e
ixX + β 〈H|Z〉a e

izZ = eihH

= eih(αX + βZ).

Now we multiply this equation with X and take the trace (tr(XZ) = 0 and tr(X2) =
tr(id) = 2) yielding

α 〈H|X〉a e
ix = eih ⇒ 〈H|X〉a = ei(h−x)

and doing the same with Z we get

〈H|Z〉a = ei(h−z).
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From the definition of |H〉a = αX|0〉1 + βZ|0〉a we get by taking the inner product with
itself

α 〈H|X〉a + β 〈H|Z〉a = 1.

Plugging in that 〈H|X〉a = ei(h−x) and 〈H|Z〉a = ei(h−z) we find

1 = αei(h−x) + βei(h−z = ei(h−x)(α+ βei(x−z)).

Taking the modulus squared yields

1 = |α|2 + |β|2 + αβei(x−z) + αβe−i(x−z)

and therefore
0 = cos(x− z).

Now we repeat the same thing for H = αX + βY and H = αY + βZ to find

0 = cos(x− z) and 0 = cos(x− y) and 0 = cos(y − z).

This equations cannot be satisfied for any angles x, y and z, which shows that one cannot
control an unknown unitary in the quantum circuit model.

(b) The interferometer applies the transformation

(α|H〉+ β|V 〉)|ψ〉 7→ α|H〉|ψ〉+ β|V 〉U |ψ〉

for any unitary U .

(c) We show the following

(i) If one of the eigenvectors of U is known then the implementation of the controlled U
is possible.

(ii) In the interferometric implementation we know eigenvectors of the physical unitary.

(i) Consider the following circuit

X

U

X

|c〉

|ψ〉
|0〉

Because it maps

(α|0〉+ β|1〉)|ψ〉|0〉 → α|0〉|ψ〉U |0〉+ β|1〉U |ψ〉|0〉

it corresponds to the circuit

U

U

|c〉

|ψ〉

|0〉
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Here ◦ is a controlled operation of 0.

Now this looks similar to the circuit corresponding to the controlled-U operation and
would be identical to it (with Wu = id) if instead of the second unitary we would have
an identity operation. If we know an eigenstate |v〉 of the unitary U this is indeed
possible, because then, we can simply input |v〉 in the last wire instead of |0〉.

(ii) In the case of the interferometer the physical unitary does not only act on the
space of the qubit but also on the space of the photon modes. W.r.t. the basis
{|a0〉, |a1〉, |b0〉, |b1〉} the total unitary operation is given by

Uphysical =

(
U 0
0 id2

)
and therefore acts trivially on a two dimensional subspace. The corresponding eigenvectors
are |b0〉, |b1〉 and therefore known for all unitaries U .

A detailed discussion can be found in arxiv 1309.7976.
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