
Chapter 1

Preliminaries

In this chapter we introduce briefly the most important concepts of the math-
ematical formalism in quantum information theory. Note that we discuss only
those parts of the formalism that are relevant for the lecture. For a more detailed
discussion see for example the script in Quantum Information Theory.1

1.1 Hilbert spaces and operators on them

An inner product space is a vector space (over R or C) equipped with an inner
product (·, ·). A Hilbert space H is an inner product space such that the metric
defined by the norm ‖α‖ ≡

√
(α, α) is complete, i.e., every Cauchy sequence is

convergent. We will often deal with finite-dimensional spaces, where the com-
pleteness condition always holds, i.e., inner product spaces are equivalent to
Hilbert spaces.

We denote the set of homomorphisms (i.e., the linear maps) from a Hilbert
space H to a Hilbert space H′ by Hom(H,H′). Furthermore, End(H) is the set
of endomorphism (i.e., the homomorphisms from a space to itself) on H, that
is, End(H) = Hom(H,H). The identity operator α 7→ α that maps any vector
α ∈ H to itself is denoted by id.

The adjoint of a homomorphism S ∈ Hom(H,H′), denoted S∗, is the unique
operator in Hom(H′,H) such that

(α′, Sα) = (S∗α′, α) ,

for any α ∈ H and α′ ∈ H′. In particular, we have (S∗)∗ = S. If S is represented
as a matrix, then the adjoint operation can be thought of as the conjugate trans-
pose.

In the following, we list some properties of endomorphisms S ∈ End(H).

• S is normal if SS∗ = S∗S.

• S is unitary if SS∗ = S∗S = id. Unitary operators S are always normal.

1http://www.itp.phys.ethz.ch/education/fs09/qit/script 05.08.2009.pdf
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• S is Hermitian if S∗ = S. Hermitian operators are always normal.

• S is positive if (α, Sα) ≥ 0 for all α ∈ H. Positive operators are always
Hermitian. We will sometimes write S ≥ 0 to express that S is positive.

• S is a projector if SS = S. Projectors are always positive.

Given an orthonormal basis {ei}i of H, we also say that S is diagonal with
respect to {ei}i if the matrix (Si,j) defined by the elements Si,j = (ei, Sej) is
diagonal.

The bra-ket notation

In this script, we will make extensive use of a variant of Dirac’s bra-ket notation,
where vectors are interpreted as operators. More precisely, we identify any
vector α ∈ H with an endomorphism |α〉 ∈ Hom(C,H), called ket, and defined
as

|α〉 : γ 7→ αγ

for any γ ∈ C. The adjoint |α〉∗ of this mapping is called bra and denoted by
〈α|. It is easy to see that 〈α| is an element of the dual space H∗ := Hom(H,C),
namely the linear functional defined by

〈α| : β 7→ (α, β)

for any β ∈ H.

Using this notation, the concatenation 〈α||β〉 of a bra 〈α| ∈ Hom(H,C)
with a ket |β〉 ∈ Hom(C,H) results in an element of Hom(C,C), which can be
identified with C. It follows immediately from the above definitions that, for
any α, β ∈ H,

〈α||β〉 ≡ (α, β) .

We will thus in the following denote the scalar product by 〈α|β〉.

Conversely, the concatenation |β〉〈α| is an element of End(H) (or, more
generally, of Hom(H,H′) if α ∈ H and β ∈ H′ are defined on different spaces).
In fact, any endomorphism S ∈ End(H) can be written as a linear combination
of such concatenations, i.e.,

S =
∑
i

|βi〉〈αi|

for some families of vectors {αi}i and {βi}i. For example, the identity id ∈
End(H) can be written as

id =
∑
i

|ei〉〈ei|

for any basis {ei} of H.
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Tensor products

Given two Hilbert spaces HA and HB , the tensor product HA ⊗HB is defined
as the Hilbert space spanned by elements of the form |α〉 ⊗ |β〉, where α ∈ HA
and β ∈ HB , such that the following equivalences hold

• (α+ α′)⊗ β = α⊗ β + α′ ⊗ β

• α⊗ (β + β′) = α⊗ β + α⊗ β′

• 0⊗ β = α⊗ 0 = 0

for any α, α′ ∈ HA and β, β′ ∈ HB , where 0 denotes the zero vector. Further-
more, the inner product of HA ⊗ HB is defined by the linear extension (and
completion) of

〈α⊗ β|α′ ⊗ β′〉 = 〈α|α′〉〈β|β′〉 .

For two homomorphisms S ∈ Hom(HA,H′A) and T ∈ Hom(HB ,H′B), the
tensor product S ⊗ T is defined as

(S ⊗ T )(α⊗ β) ≡ (Sα)⊗ (Tβ) (1.1)

for any α ∈ HA and β ∈ HB . The space spanned by the products S ⊗ T can be
canonically identified2 with the tensor product of the spaces of the homomor-
phisms, i.e.,

Hom(HA,H′A)⊗Hom(HB ,H′B) ∼= Hom(HA ⊗HB ,H′A ⊗H′B) . (1.2)

This identification allows us to write, for instance,

|α〉 ⊗ |β〉 = |α⊗ β〉 ,

for any α ∈ HA and β ∈ HB .

1.1.1 Trace and partial trace

The trace of an endomorphism S ∈ End(H) over a Hilbert space H is defined
by3

tr(S) ≡
∑
i

〈ei|S|ei〉

where {ei}i is any orthonormal basis of H. The trace is well defined because
the above expression is independent of the choice of the basis, as one can easily
verify.

The trace operation tr is obviously linear, i.e.,

tr(uS + vT ) = utr(S) + vtr(T ) ,

2That is, the mapping defined by (1.1) is an isomorphism between these two vector spaces.
3More precisely, the trace is only defined for trace class operators over a separable Hilbert

space. However, all endomorphisms on a finite-dimensional Hilbert space are trace class
operators.
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for any S, T ∈ End(H) and u, v ∈ C. It also commutes with the operation of
taking the adjoint,4

tr(S∗) = tr(S)∗ .

Furthermore, the trace is cyclic, i.e.,

tr(ST ) = tr(TS) .

Also, it is easy to verify5 that the trace tr(S) of a positive operator S ≥ 0 is
positive. More generally

(S ≥ 0) ∧ (T ≥ 0) =⇒ tr(ST ) ≥ 0 . (1.3)

The partial trace6 trB is a mapping from the endomorphisms End(HA⊗HB)
on a product space HA ⊗HB onto the endomorphisms End(HA) on HA. It is
defined as product mapping I⊗tr where I is the identity operation on End(HA)
and tr is the trace mapping elements of End(HB) to End(C). Because the trace
is a completely positive map (see definition below) the same is true for the par-
tial trace.

Similarly to the trace operation, the partial trace trB is linear and commutes
with the operation of taking the adjoint.

1.2 Postulates of quantum mechanics

Despite more than one century of research, numerous questions related to the
foundations of quantum mechanics are still unsolved (and highly disputed). For
example, no fully satisfying explanation for the fact that quantum mechanics
has its particular mathematical structure has been found so far. As a conse-
quence, some of the aspects to be discussed in the following, e.g., the postulates
of quantum mechanics, might appear to lack a clear motivation.

In this section, we pursue one of the standard approaches to quantum me-
chanics. It is based on a number of postulates about the states of physical
systems as well as their evolution. (For more details, we refer to Section 2 of [1],
where an equivalent approach is described.) The postulates are as follows:

1. States: The set of states of an isolated physical system is in one-to-one
correspondence to the projective space of a Hilbert space H. In particular,
any physical state can be represented by a normalized vector φ ∈ H which
is unique up to a phase factor. In the following, we will call H the state
space of the system.7

2. Composition: For two physical systems with state spaces HA and HB , the
state space of the product system is isomorphic to HA⊗HB . Furthermore,

4The adjoint of a complex number γ ∈ C is simply its complex conjugate.
5The assertion can, for instance, be proved using the spectral decomposition of S and T

(see below for a review of the spectral decomposition).
6Here and in the following, we will use subscripts to indicate the space on which an operator

acts.
7In quantum mechanics, the elements φ ∈ H are also called wave functions.
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if the individual systems are in states φ ∈ HA and φ′ ∈ HB , then the joint
state is

Ψ = φ⊗ φ′ ∈ HA ⊗HB .

3. Evolutions: For any possible evolution of an isolated physical system with
state space H and for any fixed time interval [t0, t1] there exists a unitary
U describing the mapping of states φ ∈ H at time t0 to states

φ′ = Uφ

at time t1. The unitary U is unique up to a phase factor.

4. Measurements: For any measurement on a physical system with state
space H there exists an observable O with the following properties. O is
a Hermitian operator on H such that each eigenvalue x of O corresponds
to a possible measurement outcome. If the system is in state φ ∈ H, then
the probability of observing outcome x when applying the measurement
is given by

PX(x) = tr(Px|φ〉〈φ|)

where Px denotes the projector onto the eigenspace belonging to the eigen-
value x, i.e., O =

∑
x xPx. Finally, the state φ′x of the system after the

measurement, conditioned on the event that the outcome is x, equals

φ′x :=

√
1

PX(x)
Pxφ .

1.3 Density operators

In quantum information theory, one often considers situations where the state
or the evolution of a system is only partially known. For example, we might be
interested in a scenario where a system might be in two possible states φ0 or φ1,
chosen according to a certain probability distribution. Another simple example
is a system consisting of two correlated parts A and B in a state

Ψ =

√
1

2

(
e0 ⊗ e0 + e1 ⊗ e1

)
∈ HA ⊗HB , (1.4)

where {e0, e1} are orthonormal vectors in HA = HB . From the point of view of
an observer who has no access to system B, the state of A does not correspond
to a fixed vector φ ∈ HA, but is rather described by a mixture of such states.

Definition. A density operator ρ on a Hilbert space H is a normalized positive
operator on H, i.e., ρ ≥ 0 and tr(ρ) = 1. The set of density operators on H
is denoted by S(H). A density operator is said to be pure if it has the form
ρ = |φ〉〈φ|. If H is d-dimensional and ρ has the form ρ = 1

d · id then it is called
fully mixed.
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For separable Hilbert spaces8, it follows from the spectral decomposition
theorem that any density operator can be written in the form

ρ =
∑
x

PX(x)|ex〉〈ex|

where PX is the probability mass function defined by the eigenvalues PX(x)
of ρ and {ex}x are the corresponding eigenvectors. Given this representation,
it is easy to see that a density operator is pure if and only if exactly one of
the eigenvalues equals 1 whereas the others are 0. In particular, we have the
following lemma.

Lemma 1.3.1. A density operator ρ is pure if and only if tr(ρ2) = 1.

Quantum-mechanical postulates in the language of density
operators

In a first step, we adapt the postulates of Section 1.2 to the notion of density op-
erators. At the same time, we generalize them to situations where the evolution
and measurements only act on parts of a composite system.

1. States: The states of a physical system are represented as density opera-
tors on a Hilbert space H. For an isolated system whose state, represented
as a vector, is φ ∈ H, the corresponding density operator is defined by
ρ := |φ〉〈φ|.9

2. Composition: The states of a composite system with state spaces HA and
HB are represented as density operators on HA ⊗ HB . Furthermore, if
the states of the individual subsystems are independent of each other and
represented by density operators ρA and ρB , respectively, then the state
of the joint system is ρA ⊗ ρB .

3. Evolution: Any isolated evolution of a subsystem of a composite system
over a fixed time interval [t0, t1] corresponds to a unitary on the state
space H of the subsystem. For a composite system with Hilbert space
HA ⊗ HB and isolated evolutions on both subsystems described by UA
and UB , respectively, any state ρAB at time t0 is transformed into the
state10

ρ′AB = (UA ⊗ UB)(ρAB)(U∗A ⊗ U∗B) (1.5)

at time t1.11

4. Measurement: Any isolated measurement on a subsystem of a composite
system is is specified by an observable, as defined above. When applying a
measurement OA =

∑
x xPx on the first subsystem of a composite system

HA ⊗HB whose state is ρAB , the probability of observing outcome x is

PX(x) = tr(Px ⊗ idBρAB) (1.6)

8It means that the space has a countable orthonormal basis.
9Note that this density operator is pure.

10In particular, if HB = C is trivial, this expression equals ρ′A = UAρAU
∗
A.

11By induction, this postulate can be readily generalized to composite systems with more
than two parts.



1.3. DENSITY OPERATORS 7

and the post-measurement state conditioned on this outcome is

ρ′AB,x =
1

PX(x)
(Px ⊗ idB)ρAB(Px ⊗ idB) . (1.7)

It is straightforward to verify that these postulates are indeed compatible
with those of Section 1.2. What is new is merely the fact that the evolution
and measurements can be restricted to individual subsystems of a composite
system. As we shall see, this extension is, however, very powerful because it
allows us to examine parts of a subsystem without the need of keeping track of
the state of the entire system.

Partial trace and purification

Let HA ⊗ HB be a composite quantum system which is initially in a state
ρAB = |Ψ〉〈Ψ| for some Ψ ∈ HA ⊗ HB . Consider now an experiment which is
restricted to the first subsystem.

It is important to note that the reduced state ρA = tr(ρAB) of a pure joint
state ρAB is not necessarily pure. For instance, if the joint system is in state
ρAB = |Ψ〉〈Ψ| for Ψ defined by (1.4) then

ρA =
1

2
|e0〉〈e0|+

1

2
|e1〉〈e1| , (1.8)

i.e., the density operator ρA is fully mixed.

Conversely, any mixed density operator can be seen as part of a pure state
on a larger system. More precisely, given ρA on HA, there exists a pure density
operator ρAB on a joint system HA ⊗ HB (where the dimension of HB is at
least as large as the rank of ρA) such that

ρA = trB(ρAB) (1.9)

A pure density operator ρAB for which (1.9) holds is called a purification of ρA.

Mixtures of states

We will now give an interpretation of non-pure, or mixed, density operators.
Consider a quantum system HA whose state depends on a classical value Z and
let ρzA ∈ S(HA) be the state of the system conditioned on the event Z = z.
Furthermore, consider an observer who does not have access to Z, that is,
from his point of view, Z can take different values distributed according to a
probability mass function PZ .

Assume now that the system HA undergoes an evolution UA followed by
a measurement OA =

∑
x xPx as above. Then, according to the postulates

of quantum mechanics, the probability mass function of the measurement out-
comes x conditioned on the event Z = z is given by

PX|Z=z(x) = tr(PxUAρ
z
AU
∗
A) .
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Hence, from the point of view of the observer who is unaware of the value Z,
the probability mass function of X is given by

PX(x) =
∑
z

PZ(z)PX|Z=z(x) .

By linearity, this can be rewritten as

PX(x) = tr(PxUAρAU
∗
A) . (1.10)

where

ρA :=
∑
z

PZ(z)ρzA .

Alternatively, expression (1.10) can be obtained by applying the postulates
of Section 1.3 directly to the density operator ρA defined above. In other words,
from the point of view of an observer not knowing Z, the situation is consistently
characterized by ρA.

We thus arrive at a new interpretation of mixed density operators. For
example, the density operator

ρA =
1

2
|e0〉〈e0|+

1

2
|e1〉〈e1| (1.11)

defined by (1.8) corresponds to a situation where either state e0 or e1 is prepared,
each with probability 1

2 . The decomposition according to (1.11) is, however, not
unique. In fact, the same state could be written as

ρA =
1

2
|ẽ0〉〈ẽ0|+

1

2
|ẽ1〉〈ẽ1|

where ẽ0 := 1√
2
(e0 + e1) and ẽ1 := 1√

2
(e0 − e1). That is, the system could

equivalently be interpreted as being prepared either in state ẽ0 or ẽ1, each with
probability 1

2 .



Chapter 2

Quantum Cryptography

2.1 Classical cryptography and the one-time-pad

In a cryptographic scenario Alice wants to send Bob a message M over a public
channel that might be eavesdropped by a third party Eve. Let M ′ be the mes-
sage Bob receives and C the information Eve obtains about the message from
wiretapping.

Eve C

Alice Bob

M M ′

The requirements are the following.

• M = M ′

• M is independent of C.

As a consequence of the following observation shown by Shannon (1949), this
task cannot be achieved if Alice and Bob have access only to classical systems.

If Bob can correctly decrypt M then there exists a function d such
that M = d(C).

The security of cryptographic schemes used in practise today relies on the as-
sumption that the function d cannot be computed efficiently. For example the
security of the well known RSA encryption scheme is based on the assumption
that factoring is hard. Here P and Q are two large random prime numbers. Bob
first sends Alice a public key K = P × Q over the public channel. Alice then
uses the key to encrypt her message M and sends back the resulting message
to Bob. The decryption scheme is such that it requires the knowledge of both

9
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factors Q and P , which is assumed to be hard for Eve to calculate from K. In
fact any known algorithm for factoring has a running time which is worse than
polynomial in the size of the input. For practical purposes a key length of 1024
bits is assumed to be sufficient.

However, efficient factorisation is possible with a quantum computer. This is
achieved with ShorÕs algorithm, which we will see later in this course. Luckily
quantum computing is not just a danger for our current communication, but as
we will see in the following, it is also the key for schemes which are provably
secure.

How do quantum systems escape Shannon’s observation? The key point is
that it is implicitly assumed that Bob and Eve see the same communication C
over the public channel. This is no longer true if quantum information is used
for communication. It is a crucial feature of quantum systems that if Eve tries
to obtain information about it by measurements she will disturb the state and
Bob can therefore find out that she was eavesdropping.

However, this is not yet very useful: Bob only detects eavesdropping after
Eve has already gathered secret data. This problem can be solved by using a
one-time-pad for encryption. Here Alice first sends Bob a secret key over the
channel, that does not contain any useful information. More precisely, a key is
simply a sequence of bits that are uniformly distributed and independent of any
information accessible to an adversary.1 Let us therefore have a look at how a
message can be sent secretly if Alice and Bob share a secret key.

For simplicity we assume that Alice wants to send Bob only one bitM ∈ {0, 1}
and they share a random key bit K ∈ {0, 1} which is uniformly distributed and
independent of Eve’s information C.

Eve CAlice

C = M ⊕K

Bob

M ′ = C ⊕K

M

The encrypted message sent over the public channel is C = (M ⊕ K). For
decryption Bob calculates

M ′ = C ⊕K = (M ⊕K)⊕K = M ⊕ (K ⊕K) = M

and therefore recovers the original message. However, because K is unknown
and distributed uniformly from Eve’s point of view she cannot obtain any in-

1So-called “direct-communication-quantum-protocols” claim that they are secure by send-
ing a message directly. These claims are however wrong.
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formation about M .2

Note that one key bit can only be used for the encryption of one message bit
(this is why it is called the one-time pad). If the same key was used to encode
two bits Eve could obtain information about the correlations.3

2.2 Quantum key distribution

We have seen how Alice and Bob can communicate secretly, if they share a key
which is independent from Eve. The problem is now: how to get such a key? In
the following we will see how Alice and Bob can generate a shared random bit,
if they have a maximally entangled state. However, in our proof we will a priori
not make any assumptions on the formalism of quantum mechanics. The idea is
to make use of the fact that strongly correlated systems are monogamous, i.e.,
there cannot be any additional correlated system.

Note that if we know that Alice and Bob share a maximally entangled state
|ψ〉〈ψ|AB , we would directly find that Eve’s state ρE must be uncorrelated be-
cause it holds that

ρABE such that trE(ρABE) = |ψ〉〈ψ| ⇒ ρABE = |ψ〉〈ψ|AB ⊗ ρE .

Key distribution protocols with security proofs that to not make any assump-
tions about the internal workings of the device (for example that a particular
quantum state is realised) are referred to as device independent.

We will now illustrate how Alice and Bob can establish a secret key if they
can have access to systems that generate values that are correlated in a specific
way. The crucial point is to establish the fact that Eve cannot have knowledge
about the key (and not that Alice’s and Bob’s key are correlated – this is true
by assumption).

Imagine that Alice and Bob were given two magically linked coins, which
always come out the same side up – either two heads or two tails – with equal
probabilities. Alice and Bob can then toss such coins at their respective loca-
tions, writing ‘0’ for heads and 1’ for tails. The resulting binary strings will be
random and identical, but will they be secret? Not necessarily. Eve could have
manufactured an additional coin, magically linked to the coins held by Alice
and Bob. The three coins always tally and Eve knows all the bits in the string.

Clearly, to achieve secrecy we must let Alice and Bob do something that
is beyond Eve’s control. For example, Alice and Bob may be given a choice
between two different coins; Alice can toss either a silver coin SA or a golden
coin GA and Bob, either SB or GB . For each toss they must choose one of the
two; tossing both SA and GA or both SB and GB is forbidden. Suppose, again,
that the coins are magically linked; Alice and Bob’s coins always come out the

2Formally one proves that PMC = PM × PC .
3See “Venona-Project” for an example where the fact that the same key was used more

than once was exploited.
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same, except when they toss SA and GB , in which case they always come out
opposite. The magic can be summarized by the following four conditions

SA = SB , SB = GA, GA = GB , GB 6= SA. (2.1)

These conditions are clearly contradictory; it is impossible to assign values to
SA, GA, SB and GB so that all the four conditions are satisfied. But remember,
Alice and Bob can toss only one coin each, and thus they can test only one of
the four conditions in equation (2.1) at a time. Unperformed tosses do not have
outcomes, and, hence, there is no contradiction here.

What if, say, Alice could break the rule and toss both of her coins, SA and
GA, in one go? It turns out that she would deprive Bob of his free choice. Sup-
pose that Alice tossed first and that her outcomes are such that SA = GA. Then
Bob has no choice but to toss SB , because this is the only choice compatible
with the conditions in equation (2.1). This simple argument implies that the
magic coins cannot be cloned. Having a clone, Z, of, say, SA, and being able to
toss it together with GA would lead to the same contradictions as tossing both
SA and GA. The existence of Z deprives Bob of his free choice. The conclusion
is that if Alice and Bob have free choice then the magic correlations must be
monogamous, that is, nothing else can be correlated to their coins. Therefore,
Eve cannot manufacture a coin that will always tally with any of the coins held
by Alice or Bob. All ingredients for secure key distribution are in place.

There is only one little problem, which is that the magic correlations do not
exist. But all is not lost, because there are physically admissible correlations
that are ‘magical’ enough for our purposes.

Let us assume that we have ε-magical coins satisfying the conditions

Pr[SA 6= SB ] ≤ ε (2.2)

Pr[SB 6= GA] ≤ ε (2.3)

Pr[GA 6= GB ] ≤ ε (2.4)

Pr[GB = SA] ≤ ε. (2.5)

We will prove that there cannot be an additional coin Z = SA provided epsilon
is sufficiently small. In order to see this assume by contradiction that there is
such a coin, i.e., Pr[Z = SA] = 1. Condition (2.2) implies

Pr[Z 6= SB ] ≤ ε. (2.6)

Combining this with condition (2.3) yields

Pr[Z 6= GA] ≤ 2 · ε (2.5)⇒ Pr[Z 6= GB ] ≤ 3 · ε (2.7)

and finally with (2.5)
Pr[Z = SA] ≤ 4 · ε (2.8)

which is a contradiction to our initial assumption that Z = SA with certainty
for ε < 1

4 .
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Even though perfect magic correlations, with ε = 0, do not exist, sufficiently
magic coins with ε < 1

4 can be constructed using quantum systems as follows.

Let us replace the coin tosses by appropriately chosen polarization measure-
ments on a maximally entangled state∣∣Φ+

〉
AB

=
1√
2

(
|00〉AB + |11〉AB

)
.

Instead of tossing coin SA, Alice simply measures her photon along α1 = 0 and
instead of tossing GA, she measures the photon along α2 = π/4. Similarly, Bob
replaces his coin tosses SB and GB by measurements along directions β1 = π/8
and β2 = 3π/8, respectively. The resulting joint probabilities satisfy conditions
(2.2)-(2.5) with ε = sin2(π/8) ≤ 0.15.

Note that Alice in Bob do not have to assume that their system is in the
maximally entangled state. In fact, it would even be fine if Eve would manu-
facture the ‘coins’. Once the devices pass a statistical test which ensures that
Equations (2.4)-(2.8) hold, they can be used without any knowledge of their
internal working. The maximally entangled state simply illustrates that suffi-
ciently magical correlations indeed do exist in nature.

Key distribution protocol

1. Eve distributes n maximally entangled pairs using the quantum commu-
nication channel between Alice and Bob.4

2. Alice and Bob select some of the pairs at random and carry our measure-
ments to check whether the statistics obey the correlations (2.2)-(2.5).

3. They measure the remaining pairs and keep the resulting bit sequences as
raw keys RA and RB .

4. They perform error correction and privacy amplification to compute the
final keys KA and KB (explained in the following).

Note that in the second step Alice and Bob need the existence of free random-
ness, i.e., that Eve cannot predict which pairs are used for the statistical test.

Error correction is needed because some of the bits will not agree as the
correlations are not perfect. The purpose of privacy amplification is to reduce
any remaining knowledge that Eve may have about the raw key bits. This is
achieved by applying a function on the raw key that compresses it to a shorter
final key.5

In order to exclude the possibility that Eve could tamper with Alice’s mes-
sage in the verification step, we assume that Alice and Bob can communicate
authentically, i.e., such that Eve cannot alter messages. This can be achieved
in practice, as there exist protocols to obtain authentic communication from an
insecure communication link as well as a (short) password P shared by Alice

4In a worst case scenario the adversary distributes the state.
5This function could for example be the XOR.
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and Bob. The rough idea is illustrated in the picture below.

Alice Bob

M , f(M,P )

In addition to the message M Alice sends Bob the value of a hash function
f(M,p) evaluated on M and a shared secret password p. Therefore Bob would
notice if Eve would change the message because without the knowledge of the
password she cannot change the value of the hash function.

Note that in order to break the symmetry between Eve and Alice a pass-
word is needed. In practise this is not a problem, because it can be short and
in contrast to the key in the one-time pad it can be used several times.

In practice QKD systems have been broken because of so-called loopholes.6

The most famous loophole is the detection loophole. As a consequence of the
limited efficiency for real detectors many of the events will not be detected
at all. The straightforeward approach would be to simply discard these events.
However, this would bias the statistics (also called post-selection) because if Eve
would control the detectors she could simply cause them to discard “unwanted”
events. Therefore, she could trick Alice and Bob into believing that the system
has the desired correlations when in reality it does not. The solution to this
problem is to randomly assign “0” and “1” to the the non-detection events. This
dilutes the statistics challenging the security proof for real implementations.

6These are deviations of the actual implementation from the theoretical prescription.



Chapter 3

Quantum algorithms

An algorithm is a recipe for performing a task (for example adding two num-
bers). We will look at problems that have classical inputs and outputs, while
the algorithm may internally store information in quantum registers. As we
will see this allows to solve some problems more efficiently1 compared to purely
classical computation.

input
algorithm

output

If the input is given as an oracle rather than a value we speak of an oracle based
algorithm.

algorithmoracle
output

Reversible computation

We use the circuit model to represent algorithms. A circuit is a sequence of
building blocks that carry out elementary computations, called gates, connected
by wires. In general, these gates may or may not be reversible. However, as
quantum theory is unitary, one usually considers gates whose action is unitary,
and therefore reversible.

An example for an irreversible gate is the AND-gate.

x

y
AND x⊕ y

1This means that the algorithm requires fewer computational steps or less queries to the
oracle as a function of the size of the input.

15
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The CNOT-gate on the other hand is for example reversible.

Let f be a computable function. Then there exists a circuit that evaluates f .
Replacing all gates of the circuit by reversible ones (these may take additional
inputs and produce additional outputs) one can transform it into a circuit C of
the following form.2

C
input

|0〉
|0〉

output

garbage

The ultimate goal would be to create a new reversible circuit C ′ which also
computes f but does not produce any garbage. However, this is impossible,
because sometimes we lose information in the computation (for example when
computing the AND). What we can do is to create no garbage except for a copy
of the input. In other words, we want to generate a circuit C ′ that has the
following functionality.

(?)C ′
x

|0〉
|0〉

x

f(x)

Such a circuit may be constructed explicitly as follows.

C C−1

|0〉
|0〉
|0〉
|0〉

x

|0〉
|0〉

f(x)

f(x)

x

|0〉
|0〉

f(x)

copy f(x)

(possible because it is a classical value)

2A function is computable if it can be described by an algorithm. If a function can be
described by an algorithm, it has a circuit model. An example for a function that is not
computable is the Halting problem. Note also that every circuit can be decomposed into a
set of universal gates (e.g. the AND and the NOT gate) and that these can be expressed as
reversible gates. Thus, every computable function has a reversible circuit.
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The above argument implies that for any computable function f there exits a
reversible circuit C ′ that implements the following transformation.

x

y
C ′

x

y ⊕ f(x)

For any unitary Uf that implements a function f we define the unitary Ũf
by the following circuit. Note that the second input to Uf is a fixed state3

|y〉 = 1√
2
(|0〉 − |1〉) and the bigger unitary Ũf corresponding to the following

circuit.

x

|0〉 − |1〉
Uf

x′

y′
(??)

Ũf

|Φ0〉 |Φ1〉

The total state before the application of Uf is given by

|Φ0〉 =
1√
2
|x〉(|0〉 − |1〉)

and afterwards

|Φ1〉 =

{
|x〉|0〉 − |x〉|1〉 if f(x) = 0

|x〉|1〉 − |x〉|0〉 if f(x) = 1

= (−1)f(x)|x〉(|0〉 − |1〉)

= (−1)f(x)|x〉|y〉,

therefore we can safely ignore |y〉 as it is unchanged. This proves that Ũf
implements the following operation

|x〉 → (−1)f(x)|x〉.

Deutsch-Josza algorithm

The Deutsch-Jozsa problem is defined as follows. We are fiven a function
f : {0, 1}n → {0, 1} (corresponding to a unitary Uf ) with the promise that
it is either constant or balanced (i.e. the number of inputs that are mapped to
0 and 1 is equal). The function is realised by an oracle of the form (??).

Goal: Determine whether f is constant or balanced.

Classical solution: Requires at least two queries to the oracle.

3We omit the normalisation sometimes for simplicity.
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Quantum solution (the Deutsch Jozsa algorithm): Requires only one input (as
we will see in the following).

The Deutsch-Jozsa algorithm is specified by the following circuit.

H

H

H

H

Ũf...
...

|0〉 H

|0〉 H

|0〉 H

|0〉 H

measurementn

Φ0 Φ1 Φ2Φ3

y

Claim: If the outcome y equals the zero string 00 . . . 00︸ ︷︷ ︸
n

then f was constant,

otherwise it was balanced.

Remark 3.0.1. Note that a Hadamard gate performs the following transfor-
mation on a state |x〉 (where x ∈ {0, 1})

|x〉 H = 1√
2

( ∑
y∈{0,1}

(−1)x·y|y〉

)

Therefore we have for x ∈ {0, 1}n

H

H

H

H

...
...

n

|y0〉

|y1〉

|yn−2〉

|yn−1〉

|x0〉

|x1〉

|xn−2〉

|xn−1〉

= 1√
2n

( ∑
y∈{0,1}n

(−1)x·y|y〉

)

where x · y corresponds to the binary scalar product.
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Let us now look at the states after each step in the circuit.

|Φ0〉 = |0〉⊗n

|Φ1〉 =
1√
2n

∑
x∈{0,1}n

|x〉

|Φ2〉 =
1√
2n

∑
x∈{0,1}n

(−1)f(x)|x〉

|Φ3〉 =
1

2n

∑
x∈{0,1}n

(−1)f(x)
∑

y∈{0,1}n
(−1)x·y|y〉

=
1

2n

∑
y∈{0,1}n

 ∑
x∈{0,1}n

(−1)f(x)+x·y

 |y〉

Therefore, the probability to get the zero string as outcome is given by

Pr[y = 0] = |〈0|⊗n · |Φ3〉|2

=

(
1

2n

)2
(∑

x

(−1)f(x)

)2

=


1 if f constant

0 if f balanced.

This completes the proof of the claim.

Grover’s algorithm

Grover’s algorithm is an algorithm searching an unsorted database with N el-
ements in O(N1/2) time.4 More precisely the problem is the following (where
we assume for simplicity that N = 2n):
Given an oracle Ũf where f : {0, 1}n → {0, 1} is such that f(x) = 1 for exactly
one input w

f(x) =

{
1 if x = w

0 else

The goal is to find w.
The expected number of oracle calls for the best classical solution is equal to 2n

2 .

4Note that a classical algorithm needs O(N) time.
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Grover’s algorithm corresponds to the optimal quantum solution and requires√
2n oracle calls.

Before we analyse Grover’s algorithm we discuss some examples for applica-
tions. Note that the algorithm is useful for questions that in the computational
class NP, i.e., they are difficult to answer (i.e. there is no known solution in
polynomial time w.r.t. the input size), but it is easy to verify that a given answer
is correct (i.e., there is a polynomial time algorithm to check).

1. factoring a number m: Here x = (p, q) where p, q ∈ N are prime numbers
such that p < q:

f(x) =

{
1 if m = p · q

0 else.

Note that this function is a simple multiplication and can therefore be
implemented efficiently. Grover’s algorithm provides an advantage com-
pared to the basic classical solution (where we essentially have to check all
the numbers smaller than

√
m). However, for factoring Shor’s algorithm

is even even better, namely of order O(logm).

2. Grover’s algorithm is useful for puzzles such a Soduku, where x corre-
sponds to a specific filling of the grid and

f(x) =

{
1 if the filling is valid

0 else.

3. A more practically useful example would be to find an aerodynamic design
of a car. In this case x is the shape of the car and

f(x) =

{
1 if air resistance < some threshold

0 else.

Let us now look at the circuit of Grover’s algorithm,

|0〉 H H H

|0〉 H H H

|0〉 H H H

Ũf Ũf0

meas.

w.r.t.

comp.

basis

repeat r times

y

V

...
...

...
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where

f0(x) =

{
0 if x = 00 . . . 0

1 else.

The claim is that y = w (i.e., the algorithm finds the input y such that f(y) = 1).

Let us first look at what the dashed box V does. We have

Ũf0
: |0〉⊗n −→ |0〉⊗n

|x〉 −→ −|x〉 if x 6= 00 . . . 0

and therefore

Ũf0
= 2|0〉〈0|⊗n − id

yielding

V = H⊗nŨf0H
⊗n

= H⊗n(2|0〉〈0|⊗n − id)H⊗n

= 2 ·H⊗n|0〉〈0|⊗nH⊗n −H⊗n ·H⊗n

Defining |s〉 as

|s〉 := H⊗n|0〉⊗n =
1√
2n

∑
x∈{0,1}n

|x〉

we can write

V = 2|s〉〈s| − id.

Furthermore we have

Ũf = −2|w〉〈w|+ id.

Grover’s algorithm carries out the following operation (V · Ũf )r on the state

|s〉 =
1√
2n

∑
x∈{0,1}n

|x〉

Let now Σ be the plane spanned by |s〉 and |w〉 and let |s′〉 be the state orthog-
onal to |w〉

|s′〉 =
1√

2n − 1

∑
x6=w

|x〉 ∈ Σ.

Therefore we have

|s〉 =

√
2n − 1

2n
|s′〉+

√
1

2n
|w〉.

For large n we define the angle Θ such that sin Θ
2 =

√
1

2n and write

|s〉 = cos
Θ

2
|s′〉+ sin

Θ

2
|w〉
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i.e., |s′〉 corresponds to a rotation of |s〉 around Θ
2 .

The figure below illustrates the operation implemented by Grover’s algo-
rithm. Consider an arbitrary state |Φ〉. First we apply Ũf corresponding to a
reflection at the vector orthogonal to |w〉 (i.e., at |s′〉). Then V is applied which
corresponds to a reflection at |s〉. The resulting state is rotated by an angle Θ
with respect to the original state

|Φ〉 → V Ũf |Φ〉 = RΘ|Φ〉.

Σ

Θ/2

ϕ

ϕ

ϕ
+

Θ

|s′〉

|w〉

|s〉

1: |Φ〉: arbitrary state

3: V Ũf |Φ〉

2:Ũf |Φ〉

After r applications of V Ũf the state |s〉 will be rotated by an angle r · Θ.

Choose now r such that rΘ + Θ
2 ≈

π
2 . Using that Θ ≈ 2

√
1

2n we find that after

r ≈ π

4

√
2n

calls to the oracle the final measurement will result in w with a probability of
almost 1.5 The number or oracle calls is therefore as promised of order O(

√
2n)

(where 2n is the size of the input alphabet). It can be shown that the algorithm
is optimal (see exercises).

Generalization

If f(x) = 1 holds for a set of values x of size k, then the number of oracle calls

is of order O(
√

2n

k ) (this is also optimal). The difficulty is that the value of k

has to be known. However, it is not a problem if it is not known, because one
can simply run the algorithm for all possible values of k and check each time
whether the solution is correct.

5We can match the state with probability 1− 1
2n

.
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The Quantum Fourier Transform

The quantum Fourier transform with respect to an orthonormal basis {|x〉} =
{|0〉, . . . , |N − 1〉} is defined as the linear operator with the following action on
the basis vectors

QFT : |x〉 7→ 1√
N

N−1∑
y=0

wx·y|y〉,

where w is the N -th root of 1

w = e
2πi
N .

A general state

|ψ〉 =

N−1∑
x=0

αx|x〉

if therefore mapped to

QFT(|ψ〉) =
1√
N

∑
x,y

αxw
x·y|y〉 =

1√
N

∑
y

βy|y〉

with

βy =
∑
x

wx·yαx =
∑
x

ei
2πx·y
N αx,

i.e., the amplitudes βy are the discrete Fourier transforms of the amplitudes αx
of the original state.

Let us check that QFT is a unitary transformation:

QFT† ◦QFT(|x〉) =
1

N

∑
x′

∑
y

w−x
′·ywx·y|x′〉

=
1

N

∑
x′

∑
y

w(x−x′)·y

︸ ︷︷ ︸
:=cx′

|x′〉

Observing that cx′ = wx−x
′
cx′ it follows that

cx′ =

{
0 if x 6= x′

N if x = x′

and therefore QFT† ◦QFT = id, i.e., QFT is unitary.

Next we will verify that the following recursive circuit implements the QFT
(here QFTn−1 denotes the QFT on n− 1 qubits)
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|Φ0〉

|x0〉

|x1〉

...

|xn−2〉

|xn−1〉

|Φ1〉

R

R2

R2n−2

H

. .
.

|yn−1〉

|yn−2〉

...

|y1〉

|y0〉

|Φ3〉 |Φ4〉

QFTn−1

with

R =

(
1 0
0 w

)
, w = e

2πi
N .

We start with the state

|Φ0〉 = |x〉 = |xn−1 . . . x0〉

where

x =

n−1∑
i=0

2ixi

is the binary representation of x.

Consider the QFTn−1 of |xn−1 . . . x1〉:6

QFT(|xn−1 . . . x1〉) =
∑

y0...yn−2

(e
2πi

2n−1︸ ︷︷ ︸
=w2

)(xn−1...x1)(yn−2...y0)|yn−2 . . . y0〉,

therefore we have

|Φ1〉 =
∑

y0...yn−2

w2(xn−1...x1)(yn−2...y0)|yn−2 . . . y0〉|x0〉

=
∑

y0...yn−2

w(xn−1...x10)(0yn−2...y0)|yn−2 . . . y0〉|x0〉.

Now we observe that R is applied if x0 and y0 are equal to 1. Therefore, we
can simply multiply by wx0y0 . Analogously the gate R2 corresponds to a mul-
tiplication with w2x0y1 and finally R2n−2 to a multiplication with w2n−2x0yn−2 .
Therefore we get

|Φ3〉 =
∑

y0...yn−2

wx0·(y0+2y1+...+2n−2yn−2)w(xn−1...x10)(0yn−2...y0)|yn−2 . . . y0〉|x0〉

=
∑

y0...yn−2

wx0·(0yn−2...y0)w(xn−1...x10)(0yn−2...y0)|yn−2 . . . y0〉|x0〉

=
∑

y0...yn−2

w(xn−1...x1x0)(0yn−2...y0)|yn−2 . . . y0〉|x0〉.

6Note that the multiplication in the exponent is with respect to the binary representation
and not bitwise.
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We can write

H|x0〉 =
∑
yn−1

(−1)x0yn−1 |yn−1〉

=
∑
yn−1

(w2n−1

)x0yn−1 |yn−1〉

=
∑
yn−1

wx0(yn−10...0)|yn−1〉

=
∑
yn−1

w(xn−1...x0)(yn−10...0)|yn−1〉

The last equality holds because

w(xn−1...x10)(yn−10...0) = 1.

Therefore we get

|Φ4〉 =
∑

y0...yn−1

w(xn−1...x1x0)(0yn−2...y0)w(xn−1...x0)(yn−10...0)|yn−1 . . . y0〉

=
∑

y0...yn−1

w(xn−1...x1x0)(yn−1yn−2...y0)|yn−1 . . . y0〉

= QFT(|x〉)

Period finding

The problem is the following. We are given a periodic function

f : {0, . . . , N − 1} → {0, . . . , N − 1}, N = 2n

such that

f(x) = f(x+ r) r 6= 0 (4)

f(x) 6= f(x+ s) s < r (44)

and the goal is to find the period r. The function is given to us as circuit Cf of
the form (?).

The quantum algorithm for period finding (proposed by Shor) is realised by
the following circuit.
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H|0〉

H|0〉

H|0〉

H|0〉

|0〉

|0〉

|0〉

Cf

QFT−1

f(x) (waste)

meas. s

|Φ0〉 |Φ1〉

...

...

n

n

We will show in the following that the outcome s of this circuit is a multiple
of N/r.

We have

|Φ0〉 =
1√
N

∑
x

|x〉|0〉⊗n

and

|Φ1〉 =
1√
N

∑
x

|x〉|f(x)〉⊗n.

For the analysis we assume that the second output of Cf (which is marked as
“waste”) is measured and that the outcome is z. Note that at the end we will
see that the analysis in independent of that outcome.7 The post-measurement
state of the first n qubits conditioned on that outcome is given by

|Φ1〉z =

√
r

N

∑
x: f(x)=z

|x〉.

Note that |Φ1〉z is not obtained by simply taking the partial trace over the sec-
ond n qubits but corresponds to the state projected onto id⊗|z〉 (see Eq. (1.6)).

Let now x0 be the smallest value such that f(x0) = z. Because of periodicity
(4) it follows that

f(x0 + t · r) = z ∀ t ∈ N

and (44) implies

f(x) 6= z if x 6= x0 + t · r.

7Instead of considering this measurement, we could carry out the analysis for the remaining
qubits. But these would be in a mixed state, which makes the analysis more complicated.
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Therefore we can write

|Φ1〉z =

√
r

N

N/r−1∑
t=0

|x0 + t · r〉.

For simplicity we assume in the following that r
∣∣N , i.e., that r divides N .8

The intuition for the circuit is the following. If we would measure |Φ1〉z
before the application of the QFT the outcomes would be all equally likely and
separated by r (this is a direct consequence of the form of |Φ1〉z given above),
however there would be an unknown offset. The application of the QFT will
transform the separation into N/r (which is not a problem, as we will see below)
and, crucially, set the offset to zero, allowing us to determine the period by two
measurements with a certain probability.

|Φ1〉z

r

r
N

Pr[x]

QFT

|Φ̃1〉z

N/r

r
N

Pr[y]

Let |Φ̃1〉z be the QFT−1 of |Φ1〉z

|Φ̃1〉z =

√
r

N2

N/r−1∑
t=0

N−1∑
y=0

w−(x0+t·r)·y|y〉

=

√
r

N2

N−1∑
y=0

w−x0·y
N/r−1∑
t=0

w−t·r·y︸ ︷︷ ︸
cy

|y〉.

Note that

cy =
N

r
if r · y is a multiple of N.

As we will see cy = 0 in all other cases. In order to see this note that

Pr[y] =
r

N2
|w−x0·y|2c2y

=
1

r
, if r · y is a multiple of N︸ ︷︷ ︸

⇔ y is a multiple of Nr

8If this would not be satisfied it it would not be a problem. The analysis would still work,
but one would need to take care of the deviations. These deviations can be kept small by
making the circuit (i.e., N) larger.
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There are r different values y of this type. Therefore, those probabilities sum
to one and hence, all other probabilities must be equal to zero.

Conclusion: With probability 1 the circuit outputs

s = N
N

r
.

Important: This conclusion holds independently of the value z. However, we
are not there yet – remember that the goal was to find r.

The idea is now to run the algorithm twice and record the output divided
by N . We get

k

r
and

k′

r
k, k′ ∈ N,

where k and k′ are unknown. The task is to extract r from k
r and k′

r .

Assumption: k and k′ are coprime9, i.e., they share no common prime factor
(we will argue that this assumption will be met with high probability).

Note that it follows from number theory that all x ∈ N have a unique
decomposition into powers of primes

x =
∏
i

pkii ,

where pi are distinct prime numbers and ki their respective multiplicites.

Step 1: Write k
r and k′

r as simplified fractions10

k

r
=
a

b
,

k′

r
=
a′

b′
. (◦)

Step 2: Let r̄ = lcm(b, b′) be the lowest common multiple of b and b′.11

Claim: r̄ = r.

Proof. Let b be represented by its prime factors

b =
∏
i

pkii .

By assumption (◦) none of the factors pi divide a (otherwise the fraction could
be simplified by dividing by pi)

pi - a ∀ pi.

We also have
b · k = a · r

9This is not a restriction on the functionality of the algorithm. The idea is that the
algorithm can be run several times until this assumption is satisfied.

10This can be done efficiently using Euclid’s algorithm.
11Also this can be calculated efficiently using Euclid’s algorithm.
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and because all pkii divide the lhs they must also divide the rhs. Because they
cannot divide a they divide r

pkii
∣∣r ∀ pkii .

Therefore r is a multiple of b. By the same reasoning it follows that r is a
multiple of b′. Therefore r is a common multiple of b and b′. It remains to show
that it is the lowest.

Consider now the decomposition into primes of r

r =
∏
i

p̃mii ,

because a · r = b · k and a′ · r = b′ · k′ any p̃mii must divide b · k and b′ · k′.
Remembering that k and k′ are coprime it follows that all p̃mii must divide either
b or b′ (or both of them). Therefore r is the lowest common multiple of b and
b′ (if r would not be the lowest common multiple then we could divide r by a
factor that is not contained in neither b nor b′).

Now we want to discuss that it is not a problem that we assumed that k and
k′ are coprime.

Claim: In any run of the algorithm the assumption that k and k′ are coprime
is satisfied with probability of at least 0.35.

Note that if this claim is true then we can simply run the algorithm several
times and the success probability converges exponentially.

Proof. Consider the probability that the assumption is wrong, i.e.,

Pr[k and k′ share at least one prime] ≤
∑

p∈Primes

Pr[p
∣∣k and p

∣∣k′]
≤

∑
p∈Primes

Pr[p
∣∣k′] · Pr[p

∣∣k′]
where the last equality holds because k and k′ are obtained from independent
runs of the algorithm.

Assume that k and k′ are positive (otherwise run the algorithm again).
Remember now that the algorithm provides the values k

r each with probability
1
r . There are r values in total and therefore r

p values that are divided by p (for

a fixed prime number p), hence

Pr[k and k′ share at least one prime] ≤
∑

p:p is prime

1

p
· 1

p

≤
∞∑
p=2

1

p2
=
π2

6
− 1 ≤ 0.65
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Shor’s factoring algorithm

Shor’s factoring algorithm [2] is really an application of this quantum algorithm
for period finding. The idea is to use the following Lemma from number theory.

Lemma 3.0.2. Let M = p · q, where p and q are primes. Let a be chosen at
random and let r be the period of the function

f : x 7→ ax mod M,

then

gcd(M,ar/2 − 1) = p with probability
1

4
.

Summary: To factor numbers one uses period finding to find the period of
the above function and then uses this Lemma.



Chapter 4

Quantum error correction

We will first introduce some mathematical concepts that will be applied in the
following.

Choi-Jamilkowski Isomorphism

Claim: The set of TPCPMs from A to B is isomorphic to the set of density
operators of the form

{ρAB : trB(ρAB) =
IA
dA
}

where dA = dim(A).

The isomorphism maps any TPCPM MA→B to the state

MA→B 7→ ρAB = (MA→B ⊗ IĀ→A)(|φ〉〈φ|AĀ) (†)

where MA→B is a TPCPM and

|φ〉AĀ =
1

dA

∑
|i〉A|i〉Ā (††)

is the maximally entangled state on AĀ for Ā ∼= A w.r.t. the basis {|i〉A}.

Ā

A

φ

B

A
ρAB

MA→B

I

ρAB is called Choi-Jamilkowski representation of MA→B .
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Proof. 1. trB(ρAB) = IA
dA

:

trB(ρAB) = trB ((M⊗ IĀ→A)|φ〉〈φ|AĀ)

= IĀ→AtrA(|φ〉〈φ|AĀ)

= IĀ→A
IĀ
dĀ

=
IA
dA

Where we used that TPCPMs commute with the trace.

2. Invertibility:

Claim: The inverse of the isomorphism maps

ρAB 7→ MA→B

with
MA→B(σA) = dA · trA(ρAB(IB ⊗ σTA))

where the transpose is w.r.t. the basis {|i〉A}.

The prove that this is indeed the inverse of the isomorphism (†) we will show
that

dA · trĀ(|φ〉〈φ|AĀ(IA ⊗ σTĀ)) = σA ∀ σA (?)

holds, which is easy to verify by an explicit calculation as follows:

Because any operator can be written as linear combinations of operators of the
the form σĀ = |i〉〈j| we prove it for such operators.

dA · trĀ(|φ〉〈φ|AĀ(IA ⊗ |j〉〈i|Ā)) = dA ·
∑
k,k′

1

dA
trĀ(|k〉A|k〉Ā〈k

′|A〈k
′|Ā(IA ⊗ |j〉〈i|Ā))

= δk′jδik|k〉〈k′|A

= |i〉〈j|A

Insert now
ρAB = (M⊗ I)|φ〉〈φ|AĀ

into
MA→B(σA) = dA · trA(ρAB(IB ⊗ σTA))

yielding

MA→B(σA) = dA · trA((M⊗ I)|φ〉〈φ|AĀ(IB ⊗ σTA))

= dA · MA→B ◦ trĀ(|φ〉〈φ|AĀ(IB ⊗ σTĀ))

=MA→B(σA)

where we used Equation (?) in the last step.
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Stinespring dilation

Define for a TPCPM E with Kraus operators {Ek} the Stinspring-Dilation
VA→BE as

VA→BE =
∑
k

Ek ⊗ |k〉E

where {|k〉E} is an orthonormal basis of the environment E. Note that VA→BE
generates a new state on the environment E.

In the following we will simply write V for VA→BE

Claim: V is an isometry (V †V = I) such that

trE(V ρV †) = E(ρ).

Proof. 1. V is an isometry:

V †V =
∑
kk′

(
E†k ⊗ 〈k|

)
(Ek′ ⊗ |k′〉)

=
∑
k

E†kEk

= I

2.

trE(V ρV †) = trE

(∑
kk′

Ek ⊗ |k〉ρE†k′ ⊗ 〈k
′|

)

=
∑
k

EkρE
†
k

The Stinespring representation tells us that it is a matter of perspective
whether we say “quantum theory is unitary and reversible” and/or “a quantum
measurement is non-unitary”. It depends on whether we take both systems B
and E into account (first view) or just consider the system B we measure (sec-
ond view).

Note that the dimension of E can be bounded by dA · dB (see exercises).

Purifications

Given a density operator ρS on S there exists a pure density operator

ρ̄SS̄ = |φ〉〈φ|SS̄
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such that

tr(ρ̄SS̄) = ρS .

Given two purifications ρ̄SS̄ and ρ̄′
SS̄

it can be shown that there exists a unitary

USS̄′→SS̄ = IS ⊗ US̄′→S̄

acting only on S̄′ s.t.

ρ̄SS̄ = Uρ̄′SS̄U
†.

Let us now apply these concepts to quantum error correction.

L P P ′ L′

logical

information

physical

information

description

after

errors

coding C errors E decoding D

E : mapping that describes error model

For the formal treatment it is useful to think of all these mappings as trace
preserving completely positive maps (TPCPMs), which is the most general way
to describe valid transformations of quantum states.

The total transformation

T = D ◦ E ◦ C

is a TPCPM and the decoding is successful if T describes the identity transfor-
mation

TL→L′ = IL→L′ .

Let us equip the logical space L with a ONB {|i〉}i=0,...,d−1 called the com-
putational basis. Let |ϕi〉 be the encoded vector corresponding to |i〉:

C : |i〉 → |ϕi〉 ∈ P.

Example. Repetition code
This code can correct bit flip but not phase flip errors.

|0〉 −→ |ϕ0〉 = |000〉

|1〉 −→ |ϕ1〉 = |111〉

The map E should model realistic errors as accurately as possible. Because
the errors are not under our control the challenge is to find a coding scheme (a
combination of the maps C and D) such that T = I for a large class of error
models that hopefully include all “physical” errors.
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0

1

L

000 = ϕ0

111 = ϕ1

P

E

000

100 010 001

111

011 101 110

C0

C1

D

D

0

1

distance larger
(e.g. Hamming
distance)

random bit
flip

decoding is
only possible if
these two sets
don’t overlap

In the diagonal basis

|0̄〉 =
1√
2

(|0〉+ |1〉)

|1̄〉 =
1√
2

(|0〉 − |1〉) .

a phase flip error acts as
|0̄〉 −→ |1̄〉
|1̄〉 −→ |0̄〉.

Noting that

|000〉 =
1

2
(|0̄0̄0̄〉+ |1̄1̄0̄〉+ |1̄0̄1̄〉+ |0̄1̄1̄〉)

|111〉 =
1

2
(|1̄0̄0̄〉+ |0̄1̄0̄〉+ |0̄0̄1̄〉+ |1̄1̄1̄〉)

we can see that a phase flip error may lead to states that are not orthogonal
anymore. For example a phase flip on any of the qubits of the |000〉 state creates
an overlap with the |111〉 state.

We will see that a necessary condition for a good code is that the spaces Ci
on which the errors map the physical states |ϕi〉 are mutually orthogonal.

Remember now that the goal was to find C and D such that

T = IL→L′ .

The Choi-Jamilkowski representation of the identity IL→L′ is given by

ρLL′ = (IL→L′ ⊗ IL̄→L)(|φ〉〈φ|LL̄)

= |φ〉〈φ|L′L
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L̄

L

φ

L′

L

I

I

ψ

Claim: The coding scheme is successful (T = I) if and only if

ψ = ((D ◦ E ◦ C)⊗ I)|φ〉〈φ| = |φ〉〈φ|L′L̄.

L̄

L

|φ〉

P
C

P ′
E

L′
D

I
L

Let now V be Stinespring dilation of E , i.e.,

E(σ) = trE(V σV †).

Analogously we define U as the Stinespring dilation of D

D(σ) = trĒ(UσU†).

L̄

L P

C

P ′
E D

L′

E

V U

L
IL̄→L

ρP ′EL D(ρP ′EL)

The goal then rephrases to

D(ρP ′EL)︸ ︷︷ ︸
:=ρ′

L′EL

= |φ〉〈φ|L′L ⊗ σE . (4)

If we trace out L′ we get the following necessary condition

ρ′EL =
IL
dL
⊗ σE

And because D only acts on P ′: ρ′EL = ρEL. Hence

ρEL =
IL
dL
⊗ σE . (44)
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This is surprising: It is a condition that no longer depends on how we encode
and decode.

How can we obtain a sufficient condition? The idea is to use purifications.
Consider a purification of ρEL̄, call it

σL̄L′EĒ = |φ〉L′L̄ ⊗ |σ〉〈σ|EĒ ,

where |σ〉EĒ is a purification of σE . This is indeed a purification of ρEL̄ because

trL′Ē(σL̄L′EĒ) = IL̄
dL̄
⊗ σE .

It can be verified by a straightforward calculation the the state ρP ′L̄E is pure
by construction

ρP ′L̄E = |ψ〉〈ψ|P ′L̄E (4.1)

where

|ψ〉P ′L̄E =
1√
dL̄

∑
i,j

Ej |ϕi〉P ′ |i〉L̄|j〉E .

Hence, if (44) holds, then both ρP ′L̄E and σL̄L′EĒ are purifications of ρEL̄.

Because all purifications are equivalent up to isometries on the purifying
system (see before), there is an isometry UP ′→L′Ē such that

UρP ′L̄EU
† = σL̄L′EĒ .

UP ′→L′E can be seen as a Stinespring dilation, hence if we trace out Ē:

D(ρP ′L̄E) = σL̄L′E = |φ〉L′L̄ ⊗ σE
which implies (4), where D is the TPCPM for which U is a Stinespring dilation.

We therefore proved that there is a decoding map D that retrieves all quan-
tum information provided (44). In other words, not only (4) ⇒ (44) but in
fact (4) ⇔ (44) holds.

The condition (44) can be rewritten as follows. Tracing out P ′ in ρP ′L̄E
we get from (4.1)

ρL̄E =
1

dL̄

∑
j,j′,i,i′

〈ϕi′ |E†j′Ej |ϕi〉|j〉〈j
′| ⊗ |i〉〈i′|.

Condition (44) can be rewritten as

ρL̄E =
1

dL̄

∑
j,j′,i,i′

ajj′δii′ |j〉〈j′| ⊗ |i〉〈i′|,

where ajj′ defines the hermitian matrix

σE =
∑
jj′

ajj′ |j〉〈j′|.
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Comparing coefficients we find

ajj′δii′ = 〈ϕi′ |E†j′Ej |ϕi〉 (�)

which is known as the Knill-Laflamme condition. In the next Section we will
see its application to stabilzer error correcting codes.

Stabilizer quantum error correcting codes

We will now discuss a handy set of tools for describing a class of quantum error
correcting codes called stabilizer formalism. Here subspaces are not charac-
terised by a set of basis states but instead with a set of operators such that
the subspace is an eigenspace. Within coding the relevant subspace of an n-
dimensional Hilbert space is the space of the physical qubits. One of the main
advantages is that error correcting codes can be described by fewer parameters
within the stabilizer formalism (compared to the state vector representation).

Motivation

Suppose we have a set of states |ψi〉 which are +1 eigenstates of a hermitian
operator S, S|ψi〉 = |ψi〉. Further suppose that T is an operator which anti-
commutes with S, ST = −TS. Then it is easy to see that

S(T |ψi〉+ = −TS|ψi〉 = −(T |ψi〉).

Thus the states T |ψi〉 are −1 eigenstates of S. Since the main idea of quantum
error correction is to detect when an error has occurred on a code space, such
pairs of operators S and T can be used in such a manner: if we are in the +1
eigenvalue subspace of S, then an error of T will move a state to a −1 eigenvalue
subspace of S: we can detect that this error has occurred.

An example of this is the bit flip code. Here the code subspace is spanned
by |000〉 and |111〉, which are eigenstates of S1 = Z⊗Z⊗ I and S2 = Z⊗ I⊗Z.
Both S1 and S2 anticommute with X ⊗ I ⊗ I.

More generally suppose that we have a set of unitary operators Si such that
our code space is defined by Si|ψ〉 = |ψ〉 for |ψ〉 in the code subspace. Further

we have errors Ej such that the products E†j′Ej always anticommute with at
least one Si. Then the Knill-Laflamme condition (�) can be satisfied, because
for the particular Si we get

〈ϕi′ |E†j′Ej |ϕi〉 = 〈ϕi′ |E†j′EjSi|ϕi〉

= −〈ϕi′ |SiE†j′Ej |ϕi〉

= −〈ϕi′ |E†j′Ej |ϕi〉

⇒ 〈ϕi′ |E†j′Ej |ϕi〉 = 0.

The idea is therefore, to define the code states as +1 eigenstates of some unitary
operators Si: If the products E†j′Ej anti-commute with at least one Si then we
have a valid code. But what should we use for the Sis?
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The Pauli and Stabilizer groups

Recall the definition of a group.

Definition. A group is a set of objects G with a binary operation called multi-
plication such that

• g1 · g2 ∈ G, ∀g1, g2 ∈ G

• g1 · (g2 · g3) = (g1 · g2) · g3

• ∃ e ∈ G such that ∀ g ∈ G, g · e = g

• ∀ g ∈ G ∃ g′ ∈ G such that g · g′ = e (inverse)

Recall that the Pauli group operators on a single qubit are {I,X, Y, Z}.

The representation of the Pauli group Pn acting on n qubits is formed by
elements of the form

ikP1 ⊗ P2 ⊗ . . . Pn
where k ∈ N and Pi ∈ {I,X, Y, Z}.

The stabilizer group S is a subgroup of Pn which has elements which all
commute with each other and which does not contain the element −I. An
example of a stabilizer group on three qubits is the group with the elements
S = {I⊗3, ZZI, ZIZ, IZZ}. We usually don’t specify all of the elements of
the stabilizer group. Instead we specify a minimal set of generators. A set of
generators is a set of elements of the group such that multiplication of these
generators leads to the full group. A minimal set of such generators is a set of
generators of minimal size. In the previous example S is generated by ZZI and
ZIZ. We write this fact as S = 〈ZZI, ZIZ〉. For a stabilizer group S we write
a set of minimal generators as S1, S2, . . . Sr.

Stabilizer Subspace Hs

Given a stabilizer group S we define the subspace of all states |ψ〉 which satisfy
S|ψ〉 = |ψ〉 for all generators Si. One of the reasons why such a stabilizer sub-
space is nice is that instead of specifying the states of the subspace we can just
specify the generators of the stabilizer group.

Now if {Ej} is a set of Pauli group errors, we can satisfy the Knill-Laflamme

condition (�) for those errors such that the product E†j′Ej anti-commute with
at least one of the generators Si. If these elements are themselves elements of
the stabilizer: E†j′Ej ∈ S, then this is also no problem because in this case

〈ϕi′ |E†j′Ej |ϕi〉 = δi′i

holds. Thus, if for an error set {Ej} all of the products E†j′Ej either anticom-
mute with the generators or are elements of the stabilizer, then this set satisfies
the Knill-Laflamme condition.

For S = 〈ZZI, ZIZ〉 we can consider for example the set of errors {III,XII, IXI, IIX}.
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Dimension of HS

We will now show that the dimension of the stabilizer subspace with generators
S1, S2, . . . , Sr is equal to

dim(HS) = 2n−r.

In order to see this we start with S1. First note that S2
1 = I (because

−I 6∈ S) from which it follows that S1 has eigenvalues ±1. Further the trace is
given by

tr(S1) = tr(ikP1 ⊗ . . .⊗ Pn))

= Πitr(Pi)

= 0

because at least one of the Pi 6= I if S is not the trivial group containing only
the identity. Because the trace is given by the sum of the eigenvalues, it follows
that 2n−1 of the eigenvalues must be equal to +1 and 2n−1 of the eigenvalues
must be equal to −1. Therefore, S1 splits the 2n dimensional space into half.

As we will see in the following each Si splits the previous subspace where
S1, . . . , Si−1 have eigenvalues +1 into half. In order to see this consider the
projector onto the subspace where S1, . . . , Si−1 have eigenvalues +1

1

2i−1
(I + S1) . . . (I + Si−1).

The trace of Si projected onto this subspace vanishes

tr(
1

2i−1
(I + S1) . . . (I + Si−1)Si) = 0.

This can be seen be using the linearity of the trace and then using as before
that the trace of a tensor product of generators is equal to the product of the
individual traces and using that none of the generators is equal to the identity.
Therefore the eigenvalues of Si on this subspace must sum to 0 and therefore,
there must be an equal number of +1 and −1 eigenvalues. Thus, there are
1
22n−(i−1) = 2n−i +1 eigenvalues left as claimed.

Logical operators for HS

So far we have seen how we can define the coding space given a set of generators
S1, . . . , Sr. The questions is now: What should we use as code words? These are
defined as the +1 eigenstates of the generators and may look very complicated
(see exercises). Instead of specifying the code states |0̄〉 and |1̄〉 we therefore
specify the logical operators X̄ and Z̄ that act on the code states like the Pauli
operators. It can be shown that X̄ and Z̄ determine |0̄〉 and |1̄〉 uniquely.

Example: 9-qubit Shor code

The Shor code has the following state vector representation

|0̄〉 = (|000〉+ |111〉)⊗3
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|1̄〉 = (|000〉 − |111〉)⊗3.

Note that in this case the representation is rather simple. However, for a general
9-qubit code the state vector representation would require the specification of
29 = 512 amplitudes.

The stabilizer representation of the Shor code is summarized in the following
table.

element operator

S1 ZZIIIIIII
S2 ZIZIIIIII
S3 IIIZZIIII
S4 IIIZIZIII
S5 IIIIIIZZI
S6 IIIIIIZIZ
S7 XXXXXXIII—
S8 XXXIIIXXX

X̄ XXXXXXXXX
Z̄ ZZZZZZZZZ

State preparation

As the codewords are the +1 eigenstates of each generator Si we need a method
to project qubits onto these eigenstates.

Consider the following circuit that allows to project an arbitrary state |ψ〉I
onto the ±1 eigenstate of an unitary, hermitian operator U = U†.

|ψ〉I

|0〉 H

U

H meas.

|ψ〉F

The circuit implements the following transformation

|0〉|ψ〉I → (|0〉+ |1〉)|ψ〉I

→ |0〉|ψ〉I + |1〉U |ψ〉I

→ (|ψ〉I + U |ψ〉I)|0〉+ (|ψ〉I − U |ψ〉I)|1〉

Therefore, if we get outcome 0 we have an eigenstate with eigenvalue +1 and if
we get outcome 1 we have an eigenstate with outcome −1.

This idea is applied for state preparation for stabilizer quantum error cor-
rection with generators S1, . . . , Sr by the following circuit.
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|0〉⊗r

|0〉

|0〉

...

H

H

S1 Sr. . .

H

H

meas.

meas.

Z |0̄〉

Here Z is a single qubit Z gate that transforms a −1 eigenstate into a +1
eigenstate.
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Bit commitment

Secure multiparty computation is one among many other applications of QIP.1

y = f(x1, . . . , xn)

�
x1, y

�
xn, y

�
x2, y

Secure function evaluation is the task in which n parties connected by commu-
nication channels want to compute a function

f : (x1, . . . , xn) 7→ y,

where each party provides an input xi and receives output y, such that the
following requirements are satisfied:

Correctness: y = f(x1, . . . , xn)

Secrecy: No party learns more about x1, x2, . . . , xn than what is implied by
f(x1, . . . , xn) and the partyÕs input xi.

A specific application of such a protocol is electronic voting. Here the input
xi ∈ {0, 1} is the vote of the i-th party and

f(x1, . . . , xn) =
∑
i

xi.

This example also illustrates that it is necessary to include in the secrecy re-
quirement “what is implied by f and xi. For example for n = 2 it is obvious
that each party knows the vote of the other party in the end.

Another example is secure data base search, where we don’t want the database

1Other applications include algorithms, metrology, thermodynamics and many more.
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provider to know what we ask. The database corresponds to a table

q1 . . . qn
T (q): T (q1) T (qn)

user

q

database provider

T

T (q)

Rather than inventing a new protocol for each application, one develops meth-
ods for certain building block functions (primitives) from which the evaluation
can be built. An example of such a primitive is bit commitment. It can be
proved that bit commitment is universal for quantum protocols, i.e., any secure
multiparty computation can be implemented from it. For purely classical pro-
tocols bit commitment is not universal but a stronger primitive called oblivious
transfer is needed.

The protocol has two phases:

achoose a “commited”

Commit phase:

a“reveal” a

Reveal phase:

An application of bit commitment is coin tossing : Here two distrusting parties
want to generate a random bit.

“ideal functionality”

r ∈ {0, 1} r
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The following protocol achieves the ideal functionality.

Alice Bob

• choose a ∈ {0, 1} at random

• commit to a a “commited”

• once “commit” received
choose b ∈ {0, 1}

b

• once b is received: “reveal” a a

• compute r = a⊕ b

• compute r = a⊕ b

• if a is not received:
choose r at random

r r

Classical computationally secure protocol for bit commitment

The idea is to use a hash function

f : {0, 1}n → {0, 1}n
′
, n′ � n

which is collision resistant, i.e., it is computationally hard to find x 6= x′ with
f(x) = f(x′). Let us furthermore assume that each output y has approximately
equally many pre-images (this property is needed later).

• Commit phase: Alice chooses random bits r1, r2, . . . , rn−1 computes

m = f(a, r1, r2, . . . , rn−1)

and sends m to Bob.

• Reveal phase: Alice sends a, r1, r2, . . . , rn−1 to Bob and he checks if
f(a, r1, r2, . . . , rn−1) = m.

The protocol is hiding because for any inputs a, r1, r2, . . . , rn−1 there exits a′

and suitably chosen r′1, r2, . . . , r
′
n−1 such that

f(a′, r′1, r2, . . . , r
′
n−1) = f(a, r1, r2, . . . , rn−1)
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(using the “pre-image property” mentioned above). Therefore the protocol is
information theoretically hiding (even if Bob has arbitrary computing power).

That the protocol is also binding follows from the fact that for given a, r1, r2, . . . , rn−1

it is hard to find a′, r′1, r
′
2, . . . , r

′
n−1 such that

f(a′, r′1, r
′
2, . . . , r

′
n−1) = f(a, r1, r2, . . . , rn−1)

(because f is a collision resistant hash function). Therefore the protocol is
computationally binding.

Quantum protocol for bit commitment

In the exercises we discussed the BB84 quantum protocol for bit commitment.
In the commit phase, Alice chooses her bit a ∈ {0, 1} and generates n random
numbers r1, .., rn ∈ {0, 1}. She then prepares n qubits in states |(r1)a〉, .., |(rn)a〉,
where a determines the basis and ri the basis element for qubit i such that

|(ri)a〉 ri = 0 ri = 1
a = 0 |0〉 |1〉
a = 1 |+〉 |−〉

and sends them to Bob.

Upon receiving the n qubits Bob measures each of them randomly in one
of the two bases {|0〉, |1〉} and {|+〉, |−〉} and keeps the outcomes in a table
together with the basis of the corresponding measurement.

According to the protocol in the reveal phase Alice sends a together with
the random numbers r1, .., rn. Bob then checks in his table whether the out-
comes coincide with ri for those measurements which he carried out in the basis
corresponding to a. If this is the case he accepts, otherwise he rejects.

The protocol is information theoretically hiding because the Bob’s local state
is identical in both cases a = 0 and a = 1. However, it is binding only under
the assumption that Alice cannot coherently store quantum information.

As it was shown in the exercises, Alice can change her bit after the commit
phase by preparing EPR pairs and storing one of the systems. Here we show
that secure bit commitment is generally impossible, if Alice has the possibility
to store quantum information. Consider the following generic bit commitment
protocol:

• Depending on a Alice chooses ρa=0
M or ρa=1

M
M−−−−−→ Bob stores it

• Alice sends M ′ that depends on a
M ′−−−−−−→ Bob checks consistency

Claim: Whatever the protocol is, if it has this structure it is insecure.

Let us denote the joint state of M and M ′ depending on by a by ρa=0
MM ′ or ρa=1

MM ′ ,
corresponding to Bob’s information after the protocol is executed but before he
measures.
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The protocol is hiding if

ρa=0
MM ′ = ρa=1

MM ′ , (5.1)

because otherwise there exists a measurement such that Bob could notice the
difference with some probabillity.

As we will see, this implies that the protocol cannot be binding. Assume
that Alice keeps a purification of ρM , i.e., Alice has a system E such that ρEM
is pure. Remember that all purifications ρEM or a state ρM are equivalent up
to local isometries on E. Therefore, for two purifications ρEM and ρE′M with
identical ρM there exists an isometry UE→E′ such that

ρE′M = UE→E′ρEMU
†
E→E′ .

Let now ρE0MM ′ and ρE1MM ′ be purifications of ρa=0
MM ′ and ρa=1

MM ′ . Because
they are both purifications of Bob’s local state (5.1) Alice can generate each
of them with a suitable chosen isometry UE→E0/1M ′ from ρEM . Therefore, the
protocol cannot be binding.
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