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Exercise 1. Spherical Hamonics

In this exercise we want to become more confident with the Spherical Harmonics.

1. Starting from
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2. Draw the following functions
’YOO‘Q; ‘Yl,m|2; ‘YQ,m|2

for m € [—1,1] in a 3D plot (using for example Mathematica).

3. Verify the orthogonality conditions explicitly for the previous functions.
Notice that Y} ., (6, ¢) with m odd (even) are always odd (even) in 6.

Exercise 2. Spherical cavity and spherical functions

Consider a sphere of radius a where the surface of the upper hemisphere has a potential +®
and the surface of the lower hemisphere has a potential —®g, that is:

+®y for 0 € [0, %]
—®¢ for 0" € (5, 7).

Do (0, ¢) = { (4)

As you know from the lecture (method of image), in this case the Green Function is given by

1
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where 7/ refers to a unit source outside the sphere and 7 to the point where the potential is
evaluated.

1. Using the expansion

l

0o l

1 1 r .

o T2 2 gy Yl ) Y 0,0) ()
>

where 7-(rs) is the smaller (larger) of |7] and ||, show that the Green Function (5) can
be written as
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2. Using Dirichlet boundary conditions, show that the potential outside the sphere has fol-
lowing the expansion

B(r0,0) = 3 (2)7 Yin(6.0) [ 00(0'. )Y (8. e, (5)

I,m
which tends to 0 as r — oo.

3. Now calculate the potential outside the sphere using (8) up to the terms of order at.

Hint. Notice that only terms with odd | will survive in the expansions (8) for the potential given
by (4).

Exercise 3. Surface charge density

As in the previous exercise, consider a spherical shell of radius R. The sphere has a charge
density o(6) such that the surface potential has the following form

D(R,0) =Vy+ Vicosb + Vacos 26, (9)

where Vg, V7, Vo are constants and @ is the polar angle.

1. Find the potential ®(r, ) both inside and outside the spherical shell. Can be useful, in
this case, to rewrite the potential in a unique form as

o0

O(r,0) = Z <alrl + blr*(lﬂ)) Py(cosb), (10)
=0

where P, are the Legendre polynomials.

Hint. Use that ® — 0 for r — oo and the orthogonality of the Legendre polynomials.
2. Calculate the electric field E(r,0).

3. Find the surface charge density o ().

Hint. Use the fact that the component of the electric field orthogonal to the spherical surface
undergoes a jump at r = R.

Exercise 4. Conductors and capacities

In this problem we introduce and analyze the concept of capacity constants for arrays of con-
ductors. Inside a conductor the electric field E vanishes and the electric potential is constant
for static (i.e. equilibrium) situations. We consider finitely many perfect conductors described
by spatially separated sets Ajp,..., A, for some r € N. Assume that they are carrying total
charges Q1,...,Q, and that there exists a (unique) equilibrium charge density p (which of
course vanishes outside the conductors).



1. The potential V; = V;({Qx}) is the potential of the i—th conductor. Show that

Vil{AQr}) = AVi({Qr}) (11)

for any A € R, using the explicit integral expression for a potential generated by a given
charge distribution.

2. Using Eq. 11 show that V; = V;({Qx}) depends linearly on Q1,...,Q,, i.e.
Vi({Qk}) =D Dy Q;, (12)
j=1

where Dy, = g& depends only on {Ag}.

It turns out that D = (Dy) is regular. We define C = (Cy) := D~!. Its components Cj;, are
called capacity constants and depend only on the geometry {Ay}.

3. Show that the total energy W of the equilibrium charge distribution p = p({Qk}, {Ax})
in the situation of the previous problem can be expressed as

1 T
W= ;1 Ci; Vi Vj. (13)



